手把手教你用python发送邮件

1.用python发邮件

今天带大家学习如何用python发送邮件,

2.模块:

利用python发送邮件我们需要用到两个python的内置模块,smtplibemail,其中smtplib模块负责发送邮件,而email模块负责构造邮件内容。
在这里插入图片描述
我们总结一下;

import smtplib

server = smtplib.SMTP()
server.connect(host,port)
server.login(uer_name,password)
server.send_mail(from_addrs,to_addr,msg.as_string())
server.quit()

第一行,是引入smtplib模块。

第三行,server是一个变量,smtplib.SMTP()是变量server的值。SMTP(Simple Mail Transfer Protocol)翻译过来是“简单邮件传输协议”的意思,SMTP 协议是由源服务器到目的地服务器传送邮件的一组规则。(可以简单理解为:我们需要通过SMTP指定一个服务器,这样才能把邮件送到另一个服务器。)

第四行代码
连接(connect)指定的服务器。
host是指定连接的邮箱服务器,你可以指定服务器的域名。通过搜索“xx邮箱服务器地址”,就可以找到。

port 是“端口”的意思。端口属于计算机网络知识里的内容,这里不详细讲。
我们需要指定SMTP服务使用的端口号,一般情况下SMTP默认端口号为25,如果25行不通,你可以通过搜索或者去邮箱设置里面查看端口。当然也可以在网上搜一下。

提醒!QQ 邮箱一般默认关闭SMTP服务,我们得先去开启它。请打开https://mail.qq.com/,登录你的邮箱。然后点击位于顶部的【设置】按钮,选择【账户设置】,然后下拉到这个位置。
在这里插入图片描述
就像上面的一样,把第一项服务打开。需要用密保手机发送短信,完成之后,QQ 邮箱会提供给你一个授权码,授权码的意思是,你可以不用QQ的网页邮箱或者邮箱客户端来登录,而是用邮箱账号+授权码获取邮箱服务器的内容。

第五行代码,
login是登录的意思,也就是登录你指定的服务器用的,需要输入两个参数:登录邮箱和授权码。

第六行代码,
是发送邮件用的,sendmail()方法需要三个参数:发件人,收件人和邮件内容
这里的发件人from_addr与上面的username是一样的,都是你的登录邮箱,
msg.as_string()是一个字符串类型:as_string()是将发送的信息msg变为字符串类型。

email 模块:也就是用来写邮件内容的模块。这个内容可以是纯文本、HTML内容、图片、附件等多种形式。

from email.mime.text import MIMEText  #纯文本,HTML
from email.mime.image import MIMEImage #图片
from email.mime.multipart import MIMEMultipart #多种组合内容

email模块这里我们不过多讲解,可以自行查阅相关文档,

好了,我们已经把smtplib这个模块讲完了,下面我们就要开始写代码了,

3.目标拆解:

3.1 版本1.0:给自己发送一句简单的话。


import smtplib

# 发信方的信息:发信邮箱,QQ邮箱授权码
from_addr = 'xxx@qq.com'
password = '你的授权码数字'

# 收信方邮箱
to_addr = 'xxx@qq.com'

# 发信服务器
smtp_server = 'smtp.qq.com'


server = smtplib.SMTP_SSL()
server.connect(smtp_server,465)

server.login(from_addr, password)
# 发送邮件
server.sendmail(from_addr, to_addr, msg.as_string())
# 关闭服务器
server.quit()

下面是完整代码,

# smtplib 用于邮件的发信动作
import smtplib
# email 用于构建邮件内容
from email.mime.text import MIMEText


# 发信方的信息:发信邮箱,QQ 邮箱授权码
from_addr = 'xxx@qq.com'
password = '你的授权码数字'

# 收信方邮箱
to_addr = 'xxx@qq.com'

# 发信服务器
smtp_server = 'smtp.qq.com'

# 邮箱正文内容,第一个参数为内容,第二个参数为格式(plain 为纯文本),第三个参数为编码
msg = MIMEText('my first email send by python','plain','utf-8')


server = smtplib.SMTP_SSL(smtp_server)
server.connect(smtp_server,465)

server.login(from_addr, password)

server.sendmail(from_addr, to_addr, msg.as_string())
# 关闭服务器
server.quit()

现在你应该可以收到信件了,他大概是这个样子

在这里插入图片描述

3.2 版本2.0:在版本1.0的基础上,增添邮件头(收发人和邮件标题)。

邮件头(header)是这一块区域,包括主题、发件人、收件人等信息:
在这里插入图片描述

from email.header import Header

msg['From'] = Header('张三')
msg['To'] = Header('不练剑的游侠')
msg['Subject'] = Header('python test')

第一行代码,从email包引入Header()方法。Header()是用来构建邮件头的。

标准邮件需要三个头部信息:From , To 和 Subject ,第三到五行代码就提供了这三个信息。

这里我们可以自定义,比如发件人邮箱地址,收件人邮箱地址,主题“python test”。

# smtplib 用于邮件的发信动作
import smtplib
# email 用于构建邮件内容
from email.mime.text import MIMEText
#构建邮件头
from email.header import Header


# 发信方的信息:发信邮箱,QQ 邮箱授权码
from_addr = 'xxx@qq.com'
password = '你的授权码数字'

# 收信方邮箱
to_addr = 'xxx@qq.com'

# 发信服务器
smtp_server = 'smtp.qq.com'

# 邮箱正文内容,第一个参数为内容,第二个参数为格式(plain 为纯文本),第三个参数为编码
msg = MIMEText('my first email send by python','plain','utf-8')
msg['From'] = Header(张三)
msg['To'] = Header(不练剑的游侠)
msg['Subject'] = Header('python test')


server = smtplib.SMTP_SSL(smtp_server)
server.connect(smtp_server,465)

server.login(from_addr, password)

server.sendmail(from_addr, to_addr, msg.as_string())
# 关闭服务器
server.quit()

这就是加了邮件头的效果
在这里插入图片描述
🆗,现在我们已经可以用python发送完整的邮件了,

好的,我可以为您提供一些关于使用Python代码实现Transformer的指导。 首先,您需要安装PyTorch和torchtext库。然后,您可以按照以下步骤实现Transformer模型: 1. 定义输入和输出的词汇表,并使用torchtext库加载数据集。 2. 定义Transformer模型的编码器和解码器部分。 3. 实现自注意力机制(self-attention)和前向神经网络(feed-forward network)。 4. 实现残差连接(residual connection)和层归一化(layer normalization)。 5. 定义Transformer模型的训练和评估过程。 下面是一个简单的示例代码,用于实现一个基本的Transformer模型: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torchtext.datasets import TranslationDataset, Multi30k from torchtext.data import Field, BucketIterator # 定义输入和输出的词汇表 SRC = Field(tokenize='spacy', tokenizer_language='de', init_token='<sos>', eos_token='<eos>', lower=True) TRG = Field(tokenize='spacy', tokenizer_language='en', init_token='<sos>', eos_token='<eos>', lower=True) # 加载数据集 train_data, valid_data, test_data = Multi30k.splits(exts=('.de', '.en'), fields=(SRC, TRG)) SRC.build_vocab(train_data, min_freq=2) TRG.build_vocab(train_data, min_freq=2) # 定义Transformer模型的编码器和解码器部分 class Encoder(nn.Module): def __init__(self, input_dim, hid_dim, n_layers, n_heads, pf_dim, dropout, device): super().__init__() self.device = device self.tok_embedding = nn.Embedding(input_dim, hid_dim) self.pos_embedding = nn.Embedding(1000, hid_dim) self.layers = nn.ModuleList([EncoderLayer(hid_dim, n_heads, pf_dim, dropout, device) for _ in range(n_layers)]) self.dropout = nn.Dropout(dropout) self.scale = torch.sqrt(torch.FloatTensor([hid_dim])).to(device) def forward(self, src, src_mask): # src: [batch_size, src_len] # src_mask: [batch_size, 1, 1, src_len] batch_size = src.shape[0] src_len = src.shape[1] pos = torch.arange(0, src_len).unsqueeze(0).repeat(batch_size, 1).to(self.device) # pos: [batch_size, src_len] src = self.dropout((self.tok_embedding(src) * self.scale) + self.pos_embedding(pos)) for layer in self.layers: src = layer(src, src_mask) return src class EncoderLayer(nn.Module): def __init__(self, hid_dim, n_heads, pf_dim, dropout, device): super().__init__() self.self_attn_layer_norm = nn.LayerNorm(hid_dim) self.ff_layer_norm = nn.LayerNorm(hid_dim) self.self_attention = MultiHeadAttentionLayer(hid_dim, n_heads, dropout, device) self.positionwise_feedforward = PositionwiseFeedforwardLayer(hid_dim, pf_dim, dropout) self.dropout = nn.Dropout(dropout) def forward(self, src, src_mask):
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值