- 博客(31)
- 收藏
- 关注
原创 【Microsoft Edge 已过期】解决办法
这个红色提示很碍眼,在网上找了看了很多解决办法,都没有用,直到看到了。在联想电脑管家找到开机启动项,把Edge相关的服务都启用。在设置里面就可以正常更新了。
2024-10-27 10:15:05 1089
原创 删除windows下Administrator绑定的微软账户(切换为本地账户)
再设置-账户-电子邮件和应用账户下,单击微软账户xxx@xx.com,点击“删除”即可。原因:在学校的电脑上登陆了我的微软账户,账户信息下出现了我的邮箱。接着删除这两个文件夹,继续注销再登录。解决办法:删除注册表(有风险)
2024-10-18 10:34:43 191
原创 Lagent & AgentLego 智能体应用搭建 作业
4、AgentLego 新增 MagicMaker 文生图工具实战。3、Lagent 新增自定义工具实战(以查询天气的工具为例)2、Lagent 调用已有 Arxiv 论文搜索工具实战。
2024-04-23 09:48:51 229
原创 Lagent & AgentLego 智能体应用搭建 笔记
AgentLego 是一个提供了多种开源工具 API 的多模态工具包,旨在像是乐高积木一样,让用户可以快速简便地拓展自定义工具,从而组装出自己的智能体。通过 AgentLego 算法库,不仅可以直接使用多种工具,也可以利用这些工具,在相关智能体框架(如 Lagent,Transformers Agent 等)的帮助下,快速构建可以增强大语言模型能力的智能体。Lagent 是一个轻量级开源智能体框架,旨在让用户可以高效地构建基于大语言模型的智能体。同时它也提供了一些典型工具以增强大语言模型的能力。
2024-04-23 08:34:13 361
原创 OpenCompass 大模型评测实战 笔记
OpenCompass采取客观评测与主观评测相结合的方法。针对具有确定性答案的能力维度和场景,通过构造丰富完善的评测集,对模型能力进行综合评价。针对体现模型能力的开放式或半开放式的问题、模型安全问题等,采用主客观相结合的评测方式。在 OpenCompass 中评估一个模型通常包括以下几个阶段:配置 -> 推理 -> 评估 -> 可视化。4、OpenCompass介绍。1、面向未来拓展能力维度。2、大模型测评中的挑战。
2024-04-23 07:53:57 411
原创 XTuner 微调 LLM:1.8B、多模态、Agent 笔记
大模型一般提供的基座模型是基于普遍共通的数据,所以针对下游任务就需要在基座模型上做微调。微调一般有两种范式,特点:傻瓜化、轻量级、适配多种硬件和生态。一、Finetune简介。二、XTuner工具。
2024-04-22 22:48:09 232 1
原创 第二期 LMDeploy 量化部署 LLM-VLM 实践 作业
2.下载internlm-chat-1.8b模型。1.配置lmdeploy运行环境。3.以命令行方式与模型对话。
2024-04-10 16:00:05 152 1
原创 第二期 LMDeploy 量化部署 LLM-VLM 实践 笔记
根据InternLM2技术报告(1提供的模型参数数据,以及KV Cache空间估算方法[2],以FP16为例,在batch-size为16、输入512 tokens、输出32 tokens的情境下,仅20B模型就会产生10.3GB的缓存。知识蒸馏是一种经典的模型压缩方法,核心思想是通过引导轻量化的学生模型"模仿"性能更好、结构更复杂的教师模型,在不改变学生模型结构的情况下提高其性能。大模型的请求量不确定,请求时间不确定,Token逐个生成,生成的数量不确定。:模型高效推理、模型量化压缩、服务化部署。
2024-04-10 15:03:49 833 1
原创 第二期 茴香豆:搭建你的 RAG 智能助理
1、RAG技术概述 RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。RAG 能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。 2、RAG工作原理 三个部分:索引、检索、生成。 其中,向量数据库是
2024-04-07 17:50:20 273
原创 CLIP:利用自然语言的监督信号学习可迁移的视觉模型
(2)和(3)为模型做zero-shot推理的结构图,分类最后使用图片特征和文本特征计算余弦相似性,把相关性最大的句子挑出来,即完成分类。,基于对比图片-文本对的预训练模型或方法。CLIP是一种基于对比学习的多模态模型,通过多模态的图文任务,学习到图片和文字的匹配关系,进而实现图片zero shot的识别能力。通过输入的训练数据是图片-文本对(图片和它对应的文本描述),学习文本图像的匹配关系。训练集:4亿个图片和文本的配对,数据集清理的非常好。上图中的(1)为模型预训练结构图,其中。
2024-02-27 21:34:58 793
原创 第六讲《OpenCompass 大模型评测》
使用 OpenCompass 评测 InternLM2-Chat-7B 模型在 C-Eval 数据集上的性能。
2024-02-21 19:04:39 209
原创 第三讲《基于 InternLM 和 LangChain 搭建你的知识库》作业
3、InternLM 接入 LangChain。5、部署 Web Demo。
2024-02-21 16:08:41 102
原创 第二讲《轻松玩转书生·浦语大模型趣味Demo》作业
1、使用 InternLM-Chat-7B 模型生成 300 字的小故事(需截图)。的 config.json 文件到本地(需截图下载过程)2、熟悉 hugging face 下载功能,使用。3、完成浦语·灵笔的图文理解及创作部署(需截图)python 包,下载。
2024-02-21 14:04:14 250
原创 第二讲《轻松玩转书生·浦语大模型趣味Demo》笔记
教程简单易上手 直接看文档一步一步来就可以了 下面是一些关键步骤的截图。2、InternLM-Chat-7B 智能对话。3、Lagent 工具调用解简单数学题。
2024-02-21 13:04:32 500
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人