第二期 茴香豆:搭建你的 RAG 智能助理

本文详细介绍了RAG技术,包括其工作原理、组成部分(索引、检索和生成)、发展进程以及与微调和LLM模型优化的比较。RAG通过结合外部知识库,提高基础模型在知识密集型任务中的准确性和可靠性。
摘要由CSDN通过智能技术生成

一、RAG介绍

1、RAG技术概述

        RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。RAG 能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。

 2、RAG工作原理

         三个部分:索引检索生成。

        其中,向量数据库是RAG专门储存外部数据的地方,将文本及其他数据通过其他预训练的模型转换为固定长度的向量表示,这些向量能够捕捉文本的语义信息。

 3、RAG工作流程

4、RAG发展进程

5、RAG常见优化方法

6、RAG和微调的比较

7、LLM模型优化方法比较

8、RAG的评价

二、茴香豆介绍

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值