一、RAG介绍
1、RAG技术概述
RAG(Retrieval Augmented Generation)技术,通过检索与用户输入相关的信息片段,并结合外部知识库来生成更准确、更丰富的回答。解决 LLMs 在处理知识密集型任务时可能遇到的挑战, 如幻觉、知识过时和缺乏透明、可追溯的推理过程等。提供更准确的回答、降低推理成本、实现外部记忆。RAG 能够让基础模型实现非参数知识更新,无需训练就可以掌握新领域的知识。
2、RAG工作原理
三个部分:索引、检索、生成。
其中,向量数据库是RAG专门储存外部数据的地方,将文本及其他数据通过其他预训练的模型转换为固定长度的向量表示,这些向量能够捕捉文本的语义信息。
3、RAG工作流程
4、RAG发展进程
5、RAG常见优化方法
6、RAG和微调的比较
7、LLM模型优化方法比较
8、RAG的评价
二、茴香豆介绍