看着一大堆订单,龙龙想知道,从外卖站出发,访问所有点了外卖的地方至少一次(这样才能把外卖送到)所需的最短路程的距离到底是多少?每次新增一个点外卖的地址,他就想估算一遍整体工作量,这样他就可以搞明白新增一个地址给他带来了多少负担。
输入格式:
输入第一行是两个数 N 和 M (2≤N≤10^ 5 , 1≤M≤10^5),分别对应树上节点的个数(包括外卖站),以及新增的送餐地址的个数。
接下来首先是一行 N 个数,第 i 个数表示第 i 个点的双亲节点的编号。节点编号从 1 到 N,外卖站的双亲编号定义为 −1。
接下来有 M 行,每行给出一个新增的送餐地点的编号
X
i
X_i
Xi。保证送餐地点中不会有外卖站,但地点有可能会重复。
为了方便计算,我们可以假设龙龙一开始一个地址的外卖都不用送,两个相邻的地点之间的路径长度统一设为 1,且从外卖站出发可以访问到所有地点。
注意:所有送餐地址可以按任意顺序访问,且完成送餐后无需返回外卖站。
输出格式:
对于每个新增的地点,在一行内输出题目需要求的最短路程的距离。
输入样例:
7 4
-1 1 1 1 2 2 3
5
6
2
4
输出样例:
2
4
4
6
题解:
首先假设以最短距离遍历完树上所有的点并返回root,我们会发现每条边都需要走两次。
再考虑把某个位置作为终点ed,走到以后无需返回到root。那么我们会发现把ed设置的越远越好,因为无需从ed返回root。此时总距离为所有点距离之和减去最大距离。
再来考虑每次新加一个点的时候距离怎么计算。假设新加的一个点为x,如果需要返回到root,设离x最近的双亲或者祖结点为y,那么此时的总距离就是之前距离加上,2*(y与x之间的距离)。再考虑不用返回root,减去离root距离最远的节点的深度。
由此,每次新加一个节点的时候,需要计算两个东西,第一个是最深的节点的距离,第二个是新加的距离。
Code:
#include <bits/stdc++.h>
#define Endl endl
#define int long long
#define pii pair<int,int>
#define piii pair<int,pair<int,int>>
using namespace std;
vector<int> dist(100010, -1);
vector<int> pa(100010 + 1, 0);
vector<vector<int>> g(100010 + 1);
int n;
int root;
int s = 0;
int dfs(int node) {
if (dist[node] != -1) return dist[node];
else {
s += 2;
dist[node] = dfs(pa[node]) + 1;
return dist[node];
}
}
void solve() {
int m;
cin >> n >> m;
for (int i = 1; i <= n; i++) {
int x;
cin >> x;
pa[i] = x;
if (x != -1) {
g[x].push_back(i);
g[i].push_back(x);
} else {
root = i;
}
}
dist[root] = 0;
int ma = -1;
while (m--) {
int x;
cin >> x;
ma = max(ma, dfs(x));
cout << s - ma << endl;
}
}
signed main() {
ios::sync_with_stdio(false);
cin.tie(nullptr), cout.tie(nullptr);
int T = 1;
while (T--) {
solve();
}
return 0;
}