设A,B为两个随机事件,若P(AB) = 0,则下列命题中正确的是:
AB未必是不可能事件
随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件)。随机事件通常用大写英文字母A、B、C等表示。
随机事件的特点:
1、可以在相同的条件下重复进行;
2、每个试验的可能结果不止一个,并且能事先预测试验的所有可能结果;
3、进行一次试验之前不能确定哪一个结果会出现。
【随机事件简称为事件】
P(AB)=0 未必是不可能事件,只是发生的次数太少,被忽略不计
一个零件有7个正品,2个次品,不放回任取3个,其中至少有两个正品的概率为:11/12
以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件.A( )A.“甲种产品滞销,乙种产品畅销”
以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件.A( )A.“甲种产品滞销,乙种产品畅销”B.“甲、乙两种产品均畅销”C.“甲产品滞销”D.“甲种产品滞销或乙种产品畅销”
(1)若A交B为不可能事件,A并B为必然事件,那么称A事件与事件B互为对立事件,其含义是:事件A和事件B必有一个且仅有一个发生。
(2)事件A是“且”的关系,则对立事件的关系为“或”;甲畅销且乙滞销,对立事件为“甲滞销或乙畅销”。(甲种产品畅销,乙种产品滞销需要满足两个条件,甲畅销且乙滞销,其对立事件就是这两种情况之外的)
解答过程如下:
(1)若A交B为不可能事件,A并B为必然事件,那么称A事件与事件B互为对立事件,其含义是:事件A和事件B必有一个且仅有一个发生。
(2)事件A是“且”的关系,则对立事件的关系为“或”;甲畅销且乙滞销,对立事件为“甲滞销或乙畅销”。(甲种产品畅销,乙种产品滞销需要满足两个条件,甲畅销且乙滞销,其对立事件就是这两种情况之外
扩展资料:
互斥事件与独立事件的不同点大致有如下二点 :
第一 ,针对的角度不同.前者是针对能不能同时发生 ,即两个互斥事件是指两者不可能同时发生 ;后者是针对有没有影响,即两个相互独立事件是指一个事件发生对另一个事件发生的概率没有影响(注意:不是一个事件发生对另一个事件发生没有影响 )。
第二,试验的次数不同。前者是一次试验下出现的不同事件 ,后者是两次或多次不同试验下出现的不同事件。
互不相容又叫互斥,即两个事件不能同时发生,强调“同时发生”。
发生了A就不能发生B,发生了B就不能发生A.
而相互独立即使两个事件各自发生与否与另一个事件的发生与否没有关系;
A和B独立的意思就是,A发生和B发生没有关系,A发生不会影响B发生,A和B也可能同时发生,不过A和B互不影响。
设有A、B两个集合
如果A、B互不相容,则A∩B=Φ,P(A∩B)= 0,P(B│A)= P(A│B)=0
如果A、B相互独立,则 P(A∩B)= P(A)P(B), P(B│A)= P(B), P(A│B)=P(A)
拓展资料:
要有两事件A,B。A,B发生的概率分别为P(A)、P(B),AB事件同时发生的概率为P(AB)。若A、B不相容,则P(AB)=0,反之未必。
加法公式对应互不相容性,乘法公式对应独立性。
如果A和B互不相容 P(A U B)= P(A)+P(B)
如果A和B相互独立 P(AB) = P(A) * P(B)
事件A、B相互独立且互不相容,则min(P(A),P(B))= 0
1.A、B相互独立
P(AB) = P(A) * P(B)
2.互不相容
P(AB) = 0
P(AUB) = P(A) + P(B)
3.对立
P(AB) = 0
P(AUB) = P(A) + P(B)
P(A) + P(B) = 1
其中,X=1,Y=1会计算两次,所以需要-1