Mip-NeRF 360的直方图损失函数
Mip-NeRF 360 的直方图损失函数如下:
其中戴帽子的变量表示NeRF MLP采样的结果,不戴帽子的变量表示proposal MLP采样的结果,损失函数值值越大,表明两个MLP采样结果差别越大,即两个MLP产生的直方图差异越明显。
由公式13可知,当时认为存在损失,即当时损失才不为0.
由公式12的求和条件 可知,函数表示的是与区间重叠的区间对应的权重之和. 由上面的描述可以画出下图:
图中红色阴影部分面积对应,黑色阴影部分面积对应
如果红色面积大于黑色面积,则可以计算损失:;其中是红色阴影部分的面积,是黑色阴影部分的面积. 如果红色面积小于黑色,则损失.
遍历所有;把这样的损失全部加和,就得到最终损失,也就是公式13.
Zip-NeRF的直方图损失函数
个人认为Zip-NeRF提出的损失函数更加科学合理。首先将NeRF MLP采样形成的直方图转变为“概率密度函数”然后按照proposal MLP产生的直方图的区间进行重新采样,最后计算两部分的面积之差作为损失。
至于如何将直方图转变为“概率密度函数”,文章中是利用一个卷积操作将直方图平滑化,从而近似于一个“概率密度函数”。