Mip-NeRF 360与Zip-NeRF的直方图损失函数详解

Mip-NeRF 360的直方图损失函数

Mip-NeRF 360 的直方图损失函数如下:

其中戴帽子的变量表示NeRF MLP采样的结果,不戴帽子的变量表示proposal MLP采样的结果,损失函数值值越大,表明两个MLP采样结果差别越大,即两个MLP产生的直方图差异越明显。

由公式13可知,当w_i-bound(\hat{t},\hat{w},T_i)>0时认为存在损失,即当w_i>bound(\hat{t},\hat{w},T_i)时损失才不为0.

由公式12的求和条件j: T_i\cap \hat{T_i}\neq \varnothing 可知,bound(\cdot )函数表示的是与区间T_i重叠的区间\hat{T_j}对应的权重之和. 由上面的描述可以画出下图:

图中红色阴影部分面积对应w_i,黑色阴影部分面积对应\Sigma\hat{w_j}=bound

如果红色面积大于黑色面积,则可以计算损失:L_i=\frac{(S_{red}-S_{black})^2}{S_{red}};其中S_{red}是红色阴影部分的面积,S_{black}是黑色阴影部分的面积. 如果红色面积小于黑色,则损失L_i=0.

遍历所有T_i;把这样的损失L_i全部加和,就得到最终损失,也就是公式13.

Zip-NeRF的直方图损失函数

个人认为Zip-NeRF提出的损失函数更加科学合理。首先将NeRF MLP采样形成的直方图转变为“概率密度函数”然后按照proposal MLP产生的直方图的区间进行重新采样,最后计算两部分的面积之差作为损失。

至于如何将直方图转变为“概率密度函数”,文章中是利用一个卷积操作将直方图平滑化,从而近似于一个“概率密度函数”。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值