卡特兰数推导

#b站#

以走网格为例,从格点(0,0)走到格点(n,n),只能向右或向上走,并且不能越过对角线的路径的条数,就是卡特兰数,记为Hn。

通项公式

(1)

Hn=\binom{2n}{n}-\binom{2n}{n-1}

(2)

Hn=\frac{1}{n+1}\binom{2n}{n}

(3)

Hn=\frac{4n-2}{n+1}H\textup{n-1}

证明原理示意图:

首先证明(1)式,先求路径总数,由(0,0)到(n,n)需要在2n次移动中选n次向右移动,也即需要\binom{2n}{n}

接下来我们需要求到不满足我们限制条件的路径数目,二者之差即为所求。

非法路径,根据设定,也即是我们穿过对角线的路径,根据示意图我们可以发现,非法路径必然和y=x+1这条直线有一交点,我们设为(a,a+1)点,由示意图2我们将非法路径(a,a+1)点之后的部分根据y=x+1对称过来,(n,n)点根据y=x+1的对称点为(n-1,n+1)。这样,所有的非法路径对称后都唯一对应一条从(0,0)到(n-1,n+1)的路径,这样就可以得出非法路径的数目为\binom{2n}{n-1},从而我们就可以计算出合法路径的总数目为\binom{2n}{n}-\binom{2n}{n-1}

(2)式证明如下:

Hn=\binom{2n}{n}-\binom{2n}{n-1}=\frac{(2n)!}{n!n!}-\frac{(2n)!}{(n-1)!(n+1)!}=\frac{(2n)!}{n!(n-1)!}(\frac{1}{n}-\frac{1}{n+1})=\frac{(2n)!}{n!(n)!(n+1)}=\frac{1}{n+1}\binom{2n}{n}

下面是卡特兰数的一些应用:

1.一个有n个0和n个1组成的字串,且所有的前缀字串皆满足1的个数不超过0的个数。这样的字串个数有多少?

2.包含n组括号的合法运算式的个数有多少?

3.一个栈的进栈序列为1,2,3,… ,n,有多少个不同的出栈序列?

5.在圆上选择2n个点,将这些点成对连接起来使得所得到的n条弦不相4. n个结点可构造多少个不同的二叉树?

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值