最大公约数(GCD) (hdu4551)5019 大公因数,也称最大公约数、最大公因子,指两个或多个整数共有 约数中最大的一个 方法有(常用模板)辗转相除法,更相减损术。 辗转相除法 • 辗转相除法辗转相除法是求两个自然数的最大公约数的一种方法, 也叫欧几里德算法。用较大数除以较小数,再用出现的余数去除 除数,再用出现的余数(第二余数)去除第一余数,如此反复, 直到最后余数是0为止。最后为0,则除数为最大公约数。依然是 求18和30 的最大公约数,方法如图所示。
GCD模板代码
(辗转相除法)
• #include • #include //万能头文件 • using namespace std; • • int gcd(int a,int b){ • if (b==0) return a; • else return gcd(b,a%b) • } • int main(){ • int x,y; • scanf("%d%d",&x,&y); • printf("%d\n",gcd(x,y)) • } 简化GCD代码 int gcd(int a,int b){ return b? gcd(b, a%b):a; } 更相减损术,来回相减,最后两数相等 • .更相减损术优化:当a和b均为偶数时,gcd(a,b) = 2×gcd(a/2, b/2) = 2×gcd(a>>1,b>>1)。当a为偶数,b为奇数时,gcd(a,b) = gcd(a/2,b) = gcd(a>>1,b)。当a为奇数,b为偶数时,gcd(a,b) = gcd(a,b/2) = gcd(a,b>>1)。当a和b均为奇数时,先利用更相减损 术运算一次,gcd(a,b) = gcd(b,a-b),此 时a-b必然是偶数,然后 又可以继续进行移位运算。 • int gcd(int a,int b){ if(a==b)return a; if(a>1,b>>1)>1,b); else if((b&1)==0)return gcd(a,b>>1); else return gcd(a-b,b);}//最小公倍数就是两数之积 除以最大公约数 最小公倍数(LCM) 数学公式 LCM(x, y) = x * y / GCD(x, y) • 模板 • int lcm(int x,int y){ • return x*y/gcd(x,y); • } • Problem - 4551 (hdu.edu.cn)
同模余定理(a%d)=b
• 定义所谓的同余,顾名思义,就是许多的数被一个数 d 去除,有 相同的余数。d 数学上的称谓为模。如 a = 6, b = 1, d = 5, 则我 们说 a 和 b 是模 d 同余的。因为他们都有相同的余数 1 。数学上 的记法为: a≡ b(mod d) 可以看出当 n < d 的时候,所有的 n 都 对 d 同商,比如时钟上的小时数,都小于 12, 所以小时数都是 模 12 的同余.对于同余有三种说法都是等价的,分别为:(1) a 和 b 是模 d 同余的.(2) 存在某个整数 n ,使得 a = b + nd .(3) d 整除 a - b .可以通过换算得出上面三个说话都是正确而且是等价的,同余 公式也有许多我们常见的定律,比如相等律,结合律,交换律, 传递律…. 公式定理 n 虽然不大,但是 n^5 却超过 long long 的范围,所幸的 是题目只要我们对答案%3,这时候我们就可 以运用同余模定理。 S(n)%3=(n^5)%3=(n*n*n*n*n)%3=((n%3)*(n%3)*(n%3)*(n%3)*(n%3))%3 hdu 3123 gcc Problem - 3123 (hdu.edu.cn)
素数模板
HDU-1262 Problem - 2012 (hdu.edu.cn) 小素数判断(可用埃式筛与欧拉筛优化) 威尔逊定理 Problem - 5391 (hdu.edu.cn) • 威尔逊定理给出了判定一个自然数是否为 素数 的 充分必要条件 。 即: 当且仅当 p为素数时: ( p -1 )! ≡ -1 ( mod p )
其他数学
• 质数 约数 欧拉函数 快速幂 扩展欧几里得算法 中国剩余定理 高斯消元 组合计数 容斥原理 简单博弈论