更相减损术,辗转相除法

一,更相减损术是出自《九章算术》的一种求最大公约数的算法,它原本是为约分而设计的,适用于任何需要求最大公约数的场合。

证明:
设gcd(x,y)=d,则满足x=k1*d,y=k2*d,易得k1与k2互质。
情况1:x=y。显然,gcd(x,y)=x=gcd(x,0)=gcd(x,y-x)。
情况2:不妨令x>y
用反证法。
假设k1,(k2 - k1)不互质,
令gcb(k1.k2-k1) = m(m为正整数且m>1);
k1 = m*a,k2 - k1 = m*b
k2 = (a+b)m
即k1,k2有公约数m,与k1,k2互质矛盾
所以假设不成立
即k1,(k2 - k1)互质
所以gcb(x,x-y) = d = gcb(x,y)
综上,gcd(x,y)=gcd(x,y-x)。
命题得证

相关代码

public static int getGreatestCommonDivisor(int max, int min) {
  if (max == min) {
    return max;
  }
  if (max < min) {  //位运算交换两数大小
    max = max ^ min;
    min = max ^ min;
    max = max ^ min;
  }
  return getGreatestCommonDivisor(max - min, min);
}

Stein算法
更相减损法有点类似于求最大公约数的Stein算法。在更相减损法中,若两个是偶数则同除以2,结果乘以2。如果增加一个判断,若为一奇一偶则偶数除以2,结果不变,若为两个奇数才相减,这样就变成了计算大整数最大公约数的非常好的一个算法,Stein算法。

Stein算法代码:

 public static int getGreatestCommonDivisor(int max, int min) {
        if (max == min) {
            return max;
        }
        if ((max & 1) == 0 && (min & 1) == 0) {
            return getGreatestCommonDivisor(max >> 1, min >> 1);
        } else if ((max & 1) == 0 && (min & 1) != 0) {
            return getGreatestCommonDivisor(max >> 1, min);
        } else if ((max & 1) != 0 && (min & 1) == 0) {
            return getGreatestCommonDivisor(max, min >> 1);
        } else {
            if (max < min) {
                max = max ^ min;
                min = max ^ min;
                max = max ^ min;
            }
            return getGreatestCommonDivisor(max - min, min);
        }
    }

二,欧几里得算法又称辗转相除法,是指用于计算两个非负整数a,b的最大公约数。应用领域有数学和计算机两个方面。计算公式gcd(a,b) = gcd(b,a mod b)。

证明:

定理:两个整数的最大公约数等于其中较小的那个数和两数相除余数的最大公约数。最大公约数(Greatest Common Divisor)缩写为GCD。

gcd(a,b) = gcd(b,a mod b) (不妨设a>b 且r=a mod b ,r不为0)

证法一
a可以表示成a = kb + r(a,b,k,r皆为正整数,且r不为0)
假设d是a,b的一个公约数,记作d|a,d|b,即a和b都可以被d整除。
而r = a - kb,两边同时除以d,r/d=a/d-kb/d,由等式右边可知m=r/d为整数,因此d|r
因此d也是b,a mod b的公约数。
因(a,b)和(b,a mod b)的公约数相等,则其最大公约数也相等,得证。


证法二
假设c = gcd(a,b),则存在m,n,使a = mc, b = nc;
令r = a mod b,即存在k,使r = a-kb = mc - knc = (m-kn)c;
故gcd(b,a mod b) = gcd(b,r) = gcd(nc,(m-kn)c) = gcd(n,m-kn)c;
则c为b与a mod b的公约数;
假设d = gcd(n,m-kn), 则存在x,y, 使n = xd, m-kn = yd; 故m = yd+kn = yd+kxd = (y+kx)d;
故有a = mc = (y+kx)dc, b = nc = xdc; 可得 gcd(a,b) = gcd((y+kx)dc,xdc) = dc;
由于gcd(a,b) = c, 故d = 1;
即gcd(n,m-kn) = 1, 故可得gcd(b,a mod b) = c;
故得证gcd(a,b) = gcd(b,a mod b).

相关代码:

public static int gcd(int m,int n) { 
        if(n == 0){
        return m; 
        }
        int r = m%n;
        return gcd(n,r);
}

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值