深度学习基础

深度学习

深度学习使用的是神经网络,是通过人类的神经构建出来的。人的神经是由很多个神经元组成的,它们之间相互连接,组成神经网络。同理深度学习的神经网络是由多个人工神经元组成的,人工神经元又叫感知机,整体分为三层:输入层、隐层(隐藏层)、输出层,但是和人的神经网络有所不同的是,深度学习的神经网络同层之间不会相互连接。
在这里插入图片描述
整体上输入层、隐层和输出层,隐层还可以展开分为其它层,由于它既不属于输入也不属于输出,所有统称为隐层。

全连接

当前层和上一层所有神经元完全相连,称为全连接,如上图就属于全连接的情况。全连接可以让神经网络学习到更多的特征,表达能力更强。但是物极必反,当神经网络的深度越来越大,全连接带来的参数计算越来越多,称为维度灾难,也会造成梯度消失和爆炸。梯度消失指梯度越来越小,梯度爆炸指梯度越来越大。
在这里插入图片描述

CNN卷积神经网络

基于上面全连接出现的维度灾难的问题,就有了卷积神经网络来解决这一问题。
在这里插入图片描述
卷积运算:使用卷积核(也称为滤波器),在原始输入上进行从左到右,从上到下的滑动,在对应位置上进行对应位置匀速相乘再相加,滑动的步长默认为1。(卷积核刚开始是随机指定的,在经过运算进行更新,找出最好的)
卷积的特点:权值共享和局部连接

卷积神经网络的基本组成单元

输入层

通常是输入卷积神经网路的原始数据或经过预处理的数据,以图像分类为例,输入层的图像包含RGB三个通道,是一个由长宽分别为H和W组成的3维像素值矩阵HW3,若指定输入层接受到的图像个数为N,则输入层的输入数据为NHW*3。
一般输入的数据是四维数据,称为四维张量

卷积层

卷积有三种方式:

  • valid:卷积核完全在信号内
  • same:卷积核中心完全在信号内
  • full:卷积核边缘在信号内

一维卷积运算:在这里插入图片描述
当卷积核中心完全在信号内时,卷积核的1元素是漏在信号外面的,这时需要补边,就是说在信号前面补一个0使卷积核完全在信号内,然后在进行移动。卷积核在边缘时同理。

二维卷积运算:
在这里插入图片描述
卷积后输出结果的shape的运算:
输 出 的 W = 输 入 的 W + 2 ∗ 补 边 − 卷 积 核 的 W 卷 积 步 长 + 1 输出的W=\frac{输入的W+2*补边-卷积核的W}{卷积步长}+1 W=W+2W+1

输 出 的 H = 输 入 的 W + 2 ∗ 补 边 − 卷 积 核 的 H 卷 积 步 长 + 1 输出的H=\frac{输入的W+2*补边-卷积核的H}{卷积步长}+1 H=W+2H+1
如果不设置补边,默认为0

三维卷积运算:
在这里插入图片描述
原始图像有三层,所以对应的卷积核也必须是三层,每层卷积对应每层图像对应位置相乘相加得出三个结果out1、out2、out3,输出结果的第一个元素等于out1+out2+out3+b;然后再滑动卷积核进行计算,得出最后的结果。但是我们发现一组卷积核只能计算出一个结果,所以就会多定义几组卷积核。卷积核的形状表示就是: 组 数 ∗ 输 入 图 像 通 道 数 ∗ 卷 积 核 的 宽 ∗ 卷 积 核 的 高 组数*输入图像通道数*卷积核的宽*卷积核的高

激活层

线性函数能够表达的问题是有限的,需要模型具有非线性,在神经网络过程中,增加非线性函数,激活函数通常在卷积之后:卷积+激活+池化。通常使用relu函数
在这里插入图片描述
将小于0的变成0,大于0的等于自身

池化层

池化层又称为降采样层,作用是对感受域内的特征进行筛选,提取区域内最具代表性的特征,能够有效的降低特征尺度,进而减少模型所需要的参数量。
按照操作类型通常分为最大池化、平均池化、求和池化,它们分别提取感受域内最大、平均、总和的特征值作为输出,最常用的是最大池化。
在这里插入图片描述
池化层不会改变通道数,只会改变大小

全连接层

全连接通常会在最后加上两个或者三个全连接,逐渐减少到与真实结果类别相同的数目。全连接分为两种形式:第一种是卷积后的全连接,会把特征展平;第二种是全连接后的全连接。

输出层

全连接后的结果输出

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值