传统计算鬼成像(TGI)

文章介绍了计算鬼成像系统的工作原理,传统方法的局限以及压缩感知和神经网络引入后如何改善重构效果。通过对比传统方法与智能优化,强调了后者在提高重建质量上的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

计算鬼成像又叫关联成像,其系统架构如图所示。首先,激光器发出的激光通过光束扩展器(BE),然后通过旋转磨砂玻璃形成随机波动光斑,然后光斑到达空间光调制器(SML)。空间光调制器对激光光斑进行相位或幅度调制,形成可用于鬼影成像的激光散斑I_i(x,y),然后将得到的激光散斑照射到目标物体上。通过目标物体的光被无空间分辨率的桶形探测器收集,记录其总光强B_i。

传统计算鬼成像

假设目标物体的透射系数矩阵为T(x,y),大小为pxp,激光散斑形成的测量矩阵为$\Phi$,则其大小为M xN, N = pxp。

\Phi =\left [ \begin{matrix} I_1(1,1)&I_1(1,2) & \cdots &I_1(p,p) \\ I_2(1,1)& I_2(1,2) & \cdots &I_2(p,p) \\ \vdots & \vdots & \ddots & \vdots\\ I_M(1,1) & I_M(1,2) & \cdots&I_M(p,p) \end{matrix} \right ]

在获得我们选择的每一行的光强$\Phi$的过程中,将其重塑为传输到物体的p xp投影模式I_i(x, y),然后桶检测器可以测量并记录相应的强度值B_i。

B_{i} =\iint I_i(x,y)T(x,y)dxdy

结合方程上面两个公式,可以重构出目标物体的相关信息。重构可由公式给出:

T^{*}(x,y)=\frac{1}{M} \sum_{i=1}^{M} (B_i-\left \langle B_i \right \rangle )I_i(x,y)=\frac{1}{M} \sum_{i=1}^{M} I_i(x,y)\left ( B_{i} -\left \langle \sum_{i=1}^{M}\iint I_i(x,y)T(x,y)dxdy \right \rangle \right )

上式中,M个样本的个数,$B_i$为集合均值,$\left \langle B_i \right \rangle =\frac{1}{M} \sum_{i=1}^{M} B_i$。上式属于传统的计算鬼影成像重建方法,需要大量重复采样,但恢复效果仍不理想。随着压缩感知技术和神经网络的出现,传统的重建方法逐渐被其他智能优化算法所取代(后面更新)。

首先下面我们来看看重构效果。重构效果与采样次数的关系。

由测量结果可以知道在传统计算鬼成像当中,直接利用散斑和桶探测器的光强值来完成相关性重构得到的重构效果是非常差的,即使在较高采样率下重构的图像效果依然是非常不理想的。

传统计算鬼成像的计算代码如下:

image=imread("b6.bmp");
image1=double(rgb2gray(image));
[m,n]=size(image1);
T=zeros(m,n);
S_3h=zeros(m,n);
B=0;
h=4096;%测量次数
A1=randn(h,m*n);%测量矩阵
for j1=1:h
Phi=reshape(A1(j1,:),64,64);
T=T+Phi;
BO=sum(sum(Phi.*image1));
B=B+BO;
S_3=(BO)*Phi;
S_3h=S_3h+S_3;
end
T_AV=T/h;
B_AV=B/h;
TB_av=S_3h/h;
gi=TB_av-T_AV*B_AV;
imshow(gi,[]);title('重构图像');

### TGI基准测试概述 TGI 基准测试主要针对特定应用场景下的性能评估,在信息技术领域内,通常涉及对数据库、服务器以及网络设备等组件进行全面评测。通过一系列标准化操作流程来衡量目标系统的响应速度、吞吐量以及其他关键指标。 #### 工具与方法 对于执行 TGI 类型的基准测试而言,存在多种工具可供选择: - **Apache JMeter** 是一款开源软件,专为负载测试设计,能够模拟大量用户并发访问网站或应用服务的情况,从而获取其在高压力环境中的表现数据[^1]。 - **LoadRunner** 提供了一套完整的解决方案用于Web应用程序的功能性和可扩展性的验证工作;它允许创建虚拟用户脚本并运行大规模场景以检验真实世界的业务流程效率[^2]。 除了上述提到的应用程序之外,还有其他一些专门面向不同技术栈或者协议的支持选项,比如Gatling专注于HTTP协议的压力测试,并以其高效的异步架构著称于世;而YCSB (Yahoo! Cloud Serving Benchmark) 则更侧重于NoSQL存储系统的读写特性分析等方面的工作[^3]。 为了确保所得到的结果具备足够的代表性和准确性,在实施过程中应当遵循如下原则: - 明确设定预期达到的目标值范围; - 尽可能还原实际生产环境中遇到的各种条件因素; - 对多次实验取平均值得到最终结论; - 记录详细的配置参数以便后续对比研究之用。 ```python import time from locust import HttpUser, TaskSet, task, between class WebsiteTasks(TaskSet): @task(2) def index(self): self.client.get("/") @task(1) def about(self): self.client.get("/about/") class WebsiteUser(HttpUser): tasks = [WebsiteTasks] wait_time = between(5, 9) if __name__ == "__main__": start_time = time.time() # 运行Locust或其他类似的压测框架代码... end_time = time.time() - start_time print(f"Total execution time: {end_time} seconds.") ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值