分治算法分析

分治算法

1.分治算法的基本思想

  • 总体思想

    1. 将待求解的较大规模的问题分割为k个更小规模的子问题

    2. 对k个子问题分别求解

    3. 如果子问题的规模仍不够小,则再划分为k个子问题,如此递归下去,直到问题的规模足够小、可以求出其解为止

    4. 将求出的小规模的问题的解合并为一个更大规模的问题的解,自底向上求出原来的解

  • 适用条件

    1. 该问题的规模缩小到一定的程度就可以容易地解决
    2. 该问题可以分解为若干个规模的相同问题,即该问题具有最优子结构性质
    3. 利用该问题分解出的子问题的解可以合并为该问题的解【如果具备了前两条特征,而不具备第三条特征,则可以考虑贪心算法或动态规划】
    4. 该问题所分解出的各子问题是相互独立的,即子问题之间不包含公共的子问题【重复地解公共的子问题用动态规划较好】

2.分治算法的时间复杂度

  • 公式求解

  • 分情况讨论

    1. f(n)=c
      T ( n ) = { O ( log ⁡ b n ) a = 1 O ( n log ⁡ b a ) a ! = 1 T(n)=\begin{cases} O(\log_bn)&a=1\\ O(n^{\log_ba})&a!=1\end{cases} T(n)={O(logbn)O(nlogba)a=1a!=1

    2. f(n)=cn
      T ( n ) = { O ( n ) a < b O ( n log ⁡ b a ) a > b O ( n log ⁡ b n ) a = b T(n)=\begin{cases} O(n)&a<b\\ O(n^{\log_ba})&a>b\\ O(n\log_bn)&a=b\end{cases} T(n)=O(n)O(nlogba)O(nlogbn)a<ba>ba=b

3.分治算法的经典案例分析

3.1 二分查找

分析

  • 给定已按升序排列的n个元素A[0:n-1],现要在这n个元素中找出某一特定元素

  • 二分查找要求代查列表中的元素是有序的

    设[low~high]为当前查找区间,首先确定区间的重点位置mid=(low+high)/2, 然后将待查的key与A[mid]进行比较。

    1. key=A[mid],则查找成功并返回其下标

    2. key<A[mid],则查找左子表A[low~mid]

    3. key>A[mid],则查找左子表A[mid~high]

      重复上述查找过程。直到查找到关键key或者查找空间为空(high-low<=0)

问题

使用递归算法,实现二分搜索。

输入

多组数据输入,每组第一个数字为数组的长度n,然后输入n个整数,最后输入待查询的值。

输出

输出待查询值所在的位置,如果没有找到,则返回-1。

样例

  • 样例输入

    3 1 2 3 2
    4 0 1 3 4 2

  • 样例输出

    2
    -1

代码

#include<stdio.h>
int mid;
int a[10001];
int erfen(int b,int low,int heigh)
{
    mid=(low+heigh)/2;
     if(a[mid]==b)
        return mid;
    if(low>=heigh)
            return -1;
    if(b>a[mid])
        return erfen(b,mid+1,heigh);
    if(b<a[mid])
        return erfen(b,low,mid-1);

}
int main()
{
    int n,b;
    while(scanf("%d",&n)!=EOF)
    {
        for(int i=1;i<=n;i++)
        {
            scanf("%d",&a[i]);
        }
        scanf("%d",&b);
        printf("%d\n",erfen(b,1,n));
    }
}
3.2 快速排序(随机化)

分析

快速排序是对冒泡排序的一种改进,提高排序的效率。

  • 基本思想

    数据分区:选中一个关键key,排序后使得关键key的左边的数字比它小,右边的数字比他大

    递归排序:递归处理关键key的左边的数字和右边的数字

  • 算法设计

    数据分区算法设计思想,随机选取一个下标与第一个数字作为交换作为关键key,然后i设为当前数组第一个数字的下标,也就是关键key,j设为关键key的下个数字的下标,然后j++(j<=n),每次增加前判断j下标对应的当前数字是否小于关键key,若小于关键key,则i++,然后下标i对应的数字与下标j对应的数字交换。j++到最后一个数字时结束,最后将下标i对应的数字与关键key交换。这样就可以将比关键key小的数字放在它的左边,比它大的数字放在它的右边。

问题

编程实现快速排序算法,深入理解快速排序算法的基本思想。

输入

多组输入,每组第一个数字为数组长度,然后输入一个一维整型数组。

输出

输出快速排序之后的一维整型数组(升序)

样例

  • 样例输入

    6 1 8 6 5 3 4
    5 12 42 2 5 8

  • 样例输出

    1 3 4 5 6 8
    2 5 8 12 42

代码

#include<stdio.h>
#include<stdlib.h>
int a[10005];
//交换函数
int swap(int a[],int i,int j)
{
    int temp=a[i];
    a[i]=a[j];
    a[j]=temp;
}
//分区函数
int partition(int a[],int p,int q)
{
    int x=a[p];
    int i=p,j;
    for(j=p+1;j<=q;j++)
    {
        if(a[j]<=x)
        {
            i++;
            swap(a,i,j);
        }
    }
    swap(a,p,i);
    return i;
}
//随机化函数
int random(int p,int q)
{
    return rand()%(q-p+1)+p;
}
//选取关键key交换至第一个,然后进行分区
int randomizedPartition(int a[],int p,int q)
{
    int r=random(p,q);
    swap(a,p,r);
    int i=partition(a,p,q);
    return i;
}
void randomizedQuickSort(int a[],int p,int q)
{
    if(p<q)
    {
        int r=randomizedPartition(a,p,q);
        randomizedQuickSort(a,p,r-1);
        randomizedQuickSort(a,r+1,q);
    }
}
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
       randomizedQuickSort(a,0,n-1);
        for(int i=0;i<n;i++)
        {
            printf("%d ",a[i]);
        }
        printf("\n");
    }
    return 0;
}

3.3 归并排序

分析

  • 概述

    • 将两个或两个以上的有序子序列归并为一个有序序列
    • 在内部排序中,通常采用二路归并排序
  • 基本思路

    假设两个有序序列一个为a[n],一个为b[n],i为a数组的下标j为b数组的下标,然后a[i]与b[j]比较,较小的那个数放入新的数组里面去,假设是a[i]小,则i++后a[i]继续与b[j]比较,假设是b[j]小,则j++后b[j]继续与a[i]比较,重复上过程,直到下标i到达最后一个数或者下标j到达最后一个数,最后将a数组或者b数组剩余的数放在新数组的后面,这样就完成了一次二路归并排序。

    归并排序就是基于分治的思想,一组无序的元素,先将其分成一个一个的元素,然后将其两两进行二路归并排序,最后生成一个新的有序数组,即排序完成。如图所示:

问题

编写一个程序,使用分治策略实现二路归并排序(升序)。

输入

多组输入,每组第一个数字为数组长度,然后输入一个一维整型数组。

输出

输出排序之后(升序)的一维整型数组,每组输出占一行。

样例

  • 样例输入

    6 1 8 6 5 3 4
    5 12 42 2 5 8

  • 样例输出

    1 3 4 5 6 8
    2 5 8 12 42

代码

#include<stdio.h>
int y[1000];
void copy(int a[1000],int y[1000],int n,int t)
{
    for(int i=n;i<=t;i++)
        a[i]=y[i];
}
void hebing(int a[1000],int y[1000],int n,int m,int t){
    int i=n;
    int j=m+1;
    int k=n;
    while(i<=m&&j<=t)
    {
        if(a[i]<=a[j])
            y[k++]=a[i++];
        else
            y[k++]=a[j++];
    }
    while(i<=m)
    {
        y[k++]=a[i++];
    }
     while(j<=t)
    {
         y[k++]=a[j++];
    }
}

void hebingsort(int a[1000],int p,int n)
    {
        int j=(p+n)/2;
        if(p<n)
        {
            hebingsort(a,p,j);
            hebingsort(a,j+1,n);
            hebing(a,y,p,j,n);
            copy(a,y,p,n);
        }

    }
int main()
{
    int n;
    while(scanf("%d",&n)!=EOF)
    {
        int a[1000];
        for(int i=0;i<n;i++)
        {
            scanf("%d",&a[i]);
        }
hebingsort(a,0,n-1);
    for(int i=0;i<n;i++)
    {
        printf("%d ",a[i]);
    }
    printf("\n");
    }
}
3.4 第k小元素

分析

给定线性序列中n个元素和一个整数k,1<=k<=n,要求找出这n个元素中第k小的元素

  • 基本思想

    利用快排分区思想,统计比关键key(基准元素)小的元素个数。如果个数大于等于k,则第k小元素在前半部分,否则在后半部分。

  • 算法设计

    对于无序序列a[s…t],在其中查找第k小元素的过程:

    • 若s=t,即其中只有一个元素,返回a[s]
    • 若s!=t,表示该序列中有两个或两个以上元素,以基准为中心将其划分为a[s…i]和a[i+1…t],a[s…i]中所有元素均小于等于a[i],a[i+1…t]中所有元素均大于a[i].
      • j = i-s+1,统计小于等于a[i]的元素个数
      • j>=k,第k小元素在a[s…i]中,递归在a[s…i]中寻找第k小元素
      • j<k,第k小元素在a[i+1…t]中,递归在a[i+1…t]中寻找第k-j小元素

    问题

    输入一个整数数组,请求出该数组的第k小元素。要求时间复杂度为O(n)。

    输入

    每组输入包括两行,第一行为一个整数数组,两个数字之间用空格隔开;第二行为k值。数组中元素个数小于10^9。

    输出

    输出第k小元素的值。

    样例

    • 样例输入

      2 5 6 1 8 7 9
      2

    • 样例输出

      2

    代码

    #include<stdio.h>
    #include <stdlib.h>
    //交换函数
    int swap(int a[],int i,int j)
    {
        int temp=a[i];
        a[i]=a[j];
        a[j]=temp;
    }
    int partition(int a[],int p,int q)
    {
        int x=a[p];
        int i=p,j;
        for(j=p+1;j<=q;j++)
        {
            if(a[j]<=x)
            {
                i++;
                swap(a,i,j);
            }
        }
        swap(a,p,i);
        return i;
    }
    int random(int p,int q)
    {
        return rand()%(q-p+1)+p;
    }
    int randomizedPartition(int a[],int p,int q)
    {
        int r=random(p,q);
        swap(a,p,r);
        int i=partition(a,p,q);
        return i;
    }
    int randomizedSelect(int a[],int s,int t,int k)
    {
        if(s==t)
            return a[s];
        int i=randomizedPartition(a,s,t),
        j=i-s+1;
        if(k<=j)
            return randomizedSelect(a,s,i,k);
        else{
            return randomizedSelect(a,i+1,t,k-j);
        }
    }
    
    int main()
    {
        int a[10000],k,i=0;
        char c;
        while(scanf("%d%c",&a[++i],&c)!=EOF)
        {
            if(c=='\n')
            {
                scanf("%d",&k);
                printf("%d\n",randomizedSelect(a,1,i,k));
                i=0;
            }
        }
    }
    
3.5 棋盘覆盖

分析

  • 问题描述

    • 在一个2k*2k个方格组成的棋盘中,恰有一个方格与其他方格方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。
    • 在棋盘覆盖问题中,要用以下四种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格。且任何两个L型骨牌不得重复覆盖。
  • 算法设计

    当k>0时,**将2k2k棋盘分为4个2k-12k-1小棋盘,特殊方格必位于4个小棋盘之一中,其余3个小棋盘中无特殊方格,为了将这3个无特殊方格的小棋盘装换为特殊棋盘,可以用一个L型骨牌覆盖这3个小棋盘的汇合处,因此问题就变为

    • 问题转化为4个较小规模的棋盘覆盖问题
    • 递归的使用这种分割,直至棋盘简化为1*1棋盘
    1. 分割棋盘:将大棋盘分割为四个小棋盘

    2. 判断特殊方格的位置:判断特殊方格在哪个小棋盘中

    3. 判断方法:记录大棋盘左上角方格的行列坐标,结合棋盘边长再与特殊方格的坐标进行比较,可判断特殊方格的位置

      • 如果特殊方格在某一小棋盘中,继续递归
      • 如果不在某一小棋盘中,则根据分割的四个小棋盘的不同位置,把右下角、左下角、右上角或者左上角的方格标记为特殊方格,然后继续递归
    4. 变量s用于记录边的方格数(边长),每次对棋盘进行分割时,边的方格数都会减半

问题

在一个n×n (n = 2k)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。
在棋盘覆盖问题中,要用图示的4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。

输入

多组测试用例,每组测试用例包括两部分,
第一部分为方格的宽度n,
第二部分则为方格,特殊方格为-1,其他方格为0。

输出

输出覆盖后的方案

样例

  • 样例输入

    4
    -1 0 0 0
    0 0 0 0
    0 0 0 0
    0 0 0 0

  • 样例输出

    -1 2 4 4
    2 2 1 4
    3 1 1 5
    3 3 5 5

代码

#include<stdio.h>
int y;
int a[100][100];
//size用于记录边的方格数(边长),每次对棋盘进行分割时,边的方格数都会减半
//(tr,tc)为大棋盘左上角方格的行列坐标 (dr,dc)为特殊方格所在的行列坐标
void qipanfugai(int tr,int tc,int dr,int dc,int size)
{
    if(size==1)
        return;
    int t=y++;
    //将大棋盘分割为四个小棋盘
    int s=size/2;

    //左上角
    //判断特殊方格在哪个小棋盘中
    if(dr<tr+s&&dc<tc+s)
    {
        //如果特殊方格在某一小棋盘中,继续递归
        qipanfugai(tr,tc,dr,dc,s);
    }
    else{
        //如果不在左上角棋盘中,把左下角的方格标记为特殊方格,然后继续递归
        a[tr+s-1][tc+s-1]=t;
        qipanfugai(tr,tc,tr+s-1,tc+s-1,s);
    }
    //左下角
        if(dr>=tr+s&&dc<tc+s)
    {
        qipanfugai(tr+s,tc,dr,dc,s);
    }
    else{
        a[tr+s][tc+s-1]=t;
        qipanfugai(tr+s,tc,tr+s,tc+s-1,s);
    }
    //右上角
        if(dr<tr+s&&dc>=tc+s)
    {
        qipanfugai(tr,tc+s,dr,dc,s);
    }
    else{
        a[tr+s-1][tc+s]=t;
        qipanfugai(tr,tc+s,tr+s-1,tc+s,s);
    }
    //右下角
        if(dr>=tr+s&&dc>=tc+s)
    {
        qipanfugai(tr+s,tc+s,dr,dc,s);
    }
    else{
        a[tr+s][tc+s]=t;
        qipanfugai(tr+s,tc+s,tr+s,tc+s,s);
    }
}
int main()
{
    int n,d,r;
    while(scanf("%d",&n)!=EOF)
    {
        y=1;
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                scanf("%d",&a[i][j]);
                if(a[i][j]!=0)
                {
                    d=i;
                    r=j;
                }
            }
        }
        qipanfugai(0,0,d,r,n);
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                printf("%d ",a[i][j]);
            }
            printf("\n");
        }
    }
}
3.6 大整数的乘法

分析

  • 十进制整数:理想状态,X和Y的位数一样,且n=2m,m=1,2,3,……;

    例如:1234*5678

  • 算法改进:为了降低时间复杂度,必须减少乘法的次数,两个数相乘可用如下公式求解

    X=AB(A代表前n/2位,B代表后n/2位) Y=CD(C代表前n/2位,D代表后n/2位)

X Y = A C ∗ 1 0 n + ( ( A − B ) ( D − C ) + A C + B D ) ∗ 1 0 n / 2 + B D XY=AC*10^n+((A-B)(D-C)+AC+BD)*10^{n/2}+BD XY=AC10n+((AB)(DC)+AC+BD)10n/2+BD

问题

使用分治算法实现两个大整数相乘。

输入

两个十进制大整数,满足每一个整数长度为2^n且两个大整数的长度相等。(多组数据)

输出

两个大整数的乘积。

样例

  • 样例输入

    1234 5678

  • 样例输出

    7006652

代码

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
int t=0;
int fuhao(long v)
{
    if(v<0)
    {
        return -1;
    }
    else
        return 1;
}
int changdu(long a)
{
    while(a!=0)
    {
        t++;
        a=a/10;
    }
    return t;
}
long zhengshuchenfa(long a,long c,int n)
{
    int s=fuhao(a)*fuhao(c);
    a=abs(a);
    c=abs(c);
    if(a==0||c==0)
        return 0;
    else if(n==1)
        return s*a*c;
    else{
        //将大整数拆成两个长度为n/2的整数
        long A=(long)(a/pow(10,n/2));
        long B=(long)(a%(long)(pow(10,n/2)+0.5));
        long C=(long)(c/pow(10,n/2));
        long D=(long)(c%(long)(pow(10,n/2)+0.5));
        //位数仍然大于1则递归求解
        long AC=zhengshuchenfa(A,C,n/2);
        long BD=zhengshuchenfa(B,D,n/2);
        long ABCD=zhengshuchenfa((A-B),(D-C),n/2)+AC+BD;
        //最后返回所求出的值
        return (long)(s*(AC*pow(10,n)+ABCD*pow(10,n/2)+BD));
    }
}
int main()
{
    int b;
    long m,n;
    while(scanf("%ld%ld",&m,&n)!=EOF)
    {
        t=0;
        b=changdu(m);
        printf("%ld\n",zhengshuchenfa(m,n,b));
    }
}

小编能力有限,如有问题欢迎大家评论,感谢大家的访问!

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值