Duffing方程

1.Duffing equation概念
1918年,Duffing在经典力学中引入了一个具有摆动的非线性方程,线称为Duffing方程。
数学上将含有x三次项的二阶方程称为Duffing方程。
Duffing方程式混沌现象的一个典型例子。
下面由线性单摆方程到非线性单摆方程推导出Duffing方程:
线性单摆方程: θ + ω 2 sin ⁡ θ = 0 \theta + \omega^2\sin\theta=0 θ+ω2sinθ=0
角频率 ω = 1 \omega =1 ω=1时,一次积分后:
1 2 ( d θ d t ) + 1 2 θ 2 = E \frac{1}{2}\left (\frac{d\theta}{dt}\right )+\frac{1}{2}\theta^2=E 21(dtdθ)+21θ2=E
在这里插入图片描述
阻尼单摆:
无阻尼时: m l d 2 θ d t 2 = F = − m g sin ⁡ θ ml\frac{d^2\theta}{dt^2}=F=-mg\sin\theta mldt2d2θ=F=mgsinθ
有阻尼时:设阻尼力与摆的速度成 l θ l\theta lθ正比:
m l d 2 θ d t 2 = F = − γ l d θ d t − m g sin ⁡ θ ml\frac{d^2\theta}{dt^2}=F=-\gamma l\frac{d\theta}{dt}-mg\sin\theta mldt2d2θ=F=γldtdθmgsinθ
β = γ / 2 m \beta = \gamma/2m β=γ/2m 得:
d 2 θ d t 2 + 2 β d θ d t + ω 2 sin ⁡ θ = 0 \frac{d^2\theta}{dt^2}+2\beta\frac{d\theta}{dt}+\omega^2\sin\theta=0 dt2d2θ+2βdtdθ+ω2sinθ=0
如果满足 sin ⁡ x ≈ x − x 3 / 6 \sin x \approx x-x^3/6 sinxxx3/6就有:
d 2 θ d t 2 + 2 β d θ d t + ω 2 ( θ − θ 3 / 6 ) = 0 \frac{d^2\theta}{dt^2}+2\beta\frac{d\theta}{dt}+\omega^2\left (\theta-\theta^3/6\right )=0 dt2d2θ+2βdtdθ+ω2(θθ3/6)=0
在这里插入图片描述
Duffing方程的一般形式:
d 2 x d t 2 + γ d x d t − κ ⋅ x + ζ ⋅ x 3 = F cos ⁡ Ω t \frac{d^2x}{dt^2}+\gamma \frac{dx}{dt}-\kappa \cdot x+\zeta \cdot x^3=F\cos\Omega t dt2d2x+γdtdxκx+ζx3=FcosΩt
其中 γ \gamma γ是阻尼系数; κ \kappa κ ζ \zeta ζ为常数; F cos ⁡ Ω t F\cos\Omega t FcosΩt是系统外力项; Ω \Omega Ω是外力频率;
一般取 κ = − 1 / 1 , ζ = 1 \kappa=-1/1,\zeta=1 κ=1/1ζ=1
2.杜芬方程性质分析(to be continue…)
无阻尼无驱动杜芬方程: d 2 x d t 2 − κ ⋅ x + ζ ⋅ x 3 = 0 \frac{d^2x}{dt^2}-\kappa \cdot x+\zeta \cdot x^3=0 dt2d2xκx+ζx3=0
积分得: 1 2 ( d x d t ) 2 + 1 2 ( 1 2 x 4 − k x 2 ) = E \frac{1}{2}\left (\frac{dx}{dt}\right )^2+\frac{1}{2}\left (\frac{1}{2}x^4-kx^2\right )=E 21(dtdx)2+21(21x4kx2)=E
E为积分常数,由初始条件决定。
第一项表示系统动能K,第二项表示系统势能V,E是系统地总能量。
d V d X = x 3 − k x = 0 \frac{dV}{dX}=x^3-kx=0 dXdV=x3kx=0
(k<0时,只有一个解;k>0时,有三个解)
势能曲线
k<0

k>0
在这里插入图片描述
有阻尼无驱动的杜芬方程: d 2 x d t 2 + γ d x d t − κ ⋅ x + x 3 = 0 \frac{d^2x}{dt^2}+\gamma \frac{dx}{dt}-\kappa \cdot x+x^3=0 dt2d2x+γdtdxκx+x3=0
1.所有闭合相轨线破裂成向内卷缩的螺旋线。
2.k<0,原点为不动点,平面任一点都趋于原点,是整个相平面吸引子。
3.k>0,原点是鞍点,坐标( x = ± κ x=\pm\sqrt{\kappa} x=±κ )处两不动点,是吸引子。整个相平面被分隔成两个区域,不同区的相点分别流向这两个不动点。
k<0
在这里插入图片描述k>0
在这里插入图片描述
有阻尼有驱动的杜芬方程: d 2 x d t 2 + γ d x d t − κ ⋅ x + x 3 = F cos ⁡ Ω t \frac{d^2x}{dt^2}+\gamma \frac{dx}{dt}-\kappa \cdot x+x^3=F\cos\Omega t dt2d2x+γdtdxκx+x3=FcosΩt
单周期
在这里插入图片描述
双周期在这里插入图片描述
讨论阻尼系数 γ \gamma γ的影响:(TO BE CONTINUED…)

混沌基本理论:
混沌不同于确定论和随机论,它是指确定系统在长时间演化过程中表现出来的貌似无规则、类似随机现象。它是非线性动力系统的一种奇异的在时间或空间上展开的稳态演化行为。
混沌定义与混沌吸引子:
如今,混沌在各研究领域和工程应用中广泛出现,但是混沌理论还没有统一的定义。广义而言,若一个系统出现非周期运动,而且系统对于长时间运动初值敏感,则可认为该系统混沌。多数学者认为关于混沌的严格定义是难以实现的,这是因为混沌存在于多种领域中,而不同领域对于混沌测量的标准与偏重面与自身的特征有关,需要使用大量的跨专业的术语进行描述一个统一的概念是困难的。混沌不可能有严格的数学定义,突变论创始人Thom是这么认为的。混沌只是针对典型的系统不稳定的瞬间行为的表征,其自身在各个领域中的应用难以精确描述表达,因此目前关于混沌的定义在不同领域学科中的表征对其在该领域中的特征相应表现的。
1.数学家Newhouse以及Famer等人给出的混沌数学定义为:针对时间系统,若确定性系统为混沌的,则该系统至少要有一个正的Lyapunov特征指数且系统要为有界的。即此定义要满足以下条件:
(1)系统有界;
(2)系统的吸引子维数有限;
(3)系统Lyapunov特征指数中至少有一个为正;
(4)系统的局部可预测。
混沌系统必为确定的非线性系统,且满足对初始条件敏感。
2.李天岩和 Yorker 在 1975 年的论文中首次给出“混沌”这个新的科学名
词并建立混沌判定定理。其描述如下:
( L i − Y o r k e 意 义 下 混 沌 ) 设 X 是 紧 度 量 空 间 , f : X → (Li-Yorke 意义下混沌)设 X 是紧度量空间,f : X\rightarrow LiYorkeXf:XX 是连续函数, 且 f 的 周 期 P ( f ) = N , 存 在 子 集 S ⊂ 且f的周期P(f) = N,存在子集S\subset fP(f)=NSX-Per(f),对于 ∀ {\forall} x,y ∈ \in S, ∀ p ∈ P e r ( f ) {\forall} p\in Per(f) pPer(f),有
lim ⁡ n → ∞ sup d ( f n ( x ) , f n ( p ) ) > 0 \lim\limits_{n\rightarrow\infty}\text{sup}d(f^n(x),f^n(p))>0 nlimsupd(fn(x),fn(p))>0
lim ⁡ n → ∞ sup d ( f n ( x ) , f n ( y ) ) > 0 \lim\limits_{n\rightarrow\infty}\text{sup}d(f^n(x),f^n(y))>0 nlimsupd(fn(x),fn(y))>0
lim ⁡ n → ∞ inf d ( f n ( x ) , f n ( y ) ) = 0 \lim\limits_{n\rightarrow\infty}\text{inf}d(f^n(x),f^n(y))=0 nliminfd(fn(x),fn(y))=0
则 称 S 为 混 沌 集 合 , f 为 L i − Y o r k e 意 义 下 混 沌 。 其 中 是 X 上 定 义 的 距 离 , P e r ( f ) 是 f 的 周 期 点 集 合 则称 S 为混沌集合,f 为Li-Yorke意义下混沌。其中是 X 上定义的距离,Per(f) 是 f 的周期点集合 SfLiYorkeXPer(f)f。(to be continued…)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值