初至和背景噪声

本文主要探讨背景噪声的一些相关属性。
首先,什么是初至?
地震波波前到达某个观测点,在观测点上,检波器检测到质点振动的时刻称为波的初至时间,简称初至。
此外,在地震记录上第一个到达的波称为初至波。一般也叫初至,其后到达的波在振动的背景上出现,称为续至波。普通反射波法记录的初至波除直达波外是低速带底界的折射波。
那么什么是背景噪声呢?
理论上来讲,背景噪声,一译“本底噪声”。一般指在发生、检查、测量或记录系统中与信号存在与否无关的一切干扰。
为了方便理解,我用了一个地震波的数据集,利用python将数据转换成了波形图,具体图片如下:
在这里插入图片描述
横坐标是每一个信号接收器的位置,纵坐标是信号返回到接收器的时间。
在这里插入图片描述
背景噪声可以近似认为是红色框内部分,即初至波之前的部分就是背景噪声。途中斜线部分则是初至波。
下面我将在背景噪声部分截取一部分数据进行hankle矩阵变换。(转hankel是把一维矩阵转化成二维矩阵)
选取同一道号的数据来进行转换,即按列选取。转换结果如下:
在这里插入图片描述
附上部分代码:

if __name__ == '__main__':
    A = __LoadData__('dataSource2.txt', 200, 1500)
    __Draw__(A)
    A =__SingalToHankel__(A[:20,0])
    print(A)

接下来进行傅里叶变换画出频谱图,这里选的数据是第一个道号前20行的数据,最终图如下:
在这里插入图片描述

附上部分代码:

if __name__ == '__main__':
    A = __LoadData__('dataSource2.txt',200, 1500)
    __Draw__(A)
    #A =__SingalToHankel__(A[0,:20])

    #print(A)
    B,S = __getFFT__(A[0:1,:20]) #行是道号,列是到达检波器时间
    print(B)
    plt.plot(B[0])
    plt.show()
    x = range(20)
    __DrawFrequencyDomain__(A[1,0:20], x)
    plt.show()

后续将继续实现其他相关属性…

2021.11.23更新:
在学习这部分相关内容时遇到了很多问题:
1.背景噪声有哪些属性?
\qquad 目前我能想到能描述背景噪声属性的方式有:频谱图、能量谱和相位谱图以及噪声的混沌性检测。
2.上述的图和检测混沌性有什么作用?
\qquad 通过查阅文献后,我了解到绘制频谱图往往要用到傅里叶变换,频谱图能够帮助我们分析信号的成分,便于对信号进行处理。具体例子可参考:https://www.cnblogs.com/liugl7/p/5265334.html
相位(phase)是对于一个波,特定的时刻在它循环中的位置:一种它是否在波峰、波谷或它们之间的某点的标度。相位描述信号波形变化的度量,通常以度 (角度)作为单位,也称作相角。当信号波形以周期的方式变化,波形循环一周即为360° 。
\qquad 相位常应用在科学领域,如数学、物理学等。例如:在函数y=Acos(ωx+φ)中,ωx+φ称为相位。
\qquad 为了能既方便又明白地表示一个信号在不同频率下的幅值和相位,可以采用成为频谱图的表示方法。
\qquad 在傅里叶分析中,把各个分量的幅度|Fn|或 Cn 随着频率nω1的变化称为信号的幅度谱。
\qquad 而把各个分量的相位 φn 随角频率 nω1 变化称为信号的相位谱。
\qquad 幅度谱和相位谱统称为信号的频谱。
\qquad 三角形式的傅里叶级数频率为非负的,对应的频谱一般称为单边谱;指数形式的傅里叶级数频率为整个实轴,所以称为双边谱。
\qquad 本次更新是接着上述数据(第一道接收器以及前20行数据)继续进行背景噪音相关属性提取,首先进行快速傅里叶变换(附上部分代码和部分结果):

# 快速傅里叶变换
    fft_A = fft(A)
    print(fft_A)

结果:
在这里插入图片描述

需要注意的是:
( 1 ) : (\mathbf{1}): (1):变换之后的结果数据长度和原始采样信号是一样的。
( 2 ) : (\mathbf{2}): (2):每一个变换之后的值是一个复数,为a+bj的形式。
( 3 ) : (\mathbf{3}): (3):复数a+bj在坐标系中表示为(a,b),故而复数具有模和角度。
( 4 ) : (\mathbf{4}): (4):快速傅里叶变换具有 “振幅谱”“相位谱”,它其实就是通过对快速傅里叶变换得到的复数结果进一步求出来的。
( 5 ) : (\mathbf{5}): (5):那这个直接变换后的结果是需要的,在FFT中,得到的结果是复数。
( 6 ) : (\mathbf{6}): (6):FFT得到的复数的模(即绝对值)就是对应的“振幅谱”,复数所对应的角度,就是所对应的“相位谱。
下面进行图像的绘制,首先来回顾原始波形图:
在这里插入图片描述

然后进行双边振幅谱和双边相位谱的绘制,此时的数据还未进行归一化处理(因为我选取的数据量也不是很大- -):
在这里插入图片描述

在此处仅仅考虑“振幅谱”,不再考虑相位谱。
不难看出振幅谱的纵坐标很大,而且具有对称性,这是怎么一回事呢?
关于振幅值很大的解释以及解决办法——归一化和取一半处理

比如有一个信号如下:
Y = A 1 + A 2 ∗ c o s ( 2 π ω 2 + φ 2 ) + A 3 ∗ c o s ( 2 π ω 3 + φ 3 ) + A 4 ∗ c o s ( 2 π ω 4 + φ 4 ) \mathbf{Y}=\mathbf{A_1}+\mathbf{A_2}*cos(2\pi\omega_2+\varphi_2)+\mathbf{A_3}*cos(2\pi\omega_3+\varphi_3)+\mathbf{A_4}*cos(2\pi\omega_4+\varphi_4) Y=A1+A2cos(2πω2+φ2)+A3cos(2πω3+φ3)+A4cos(2πω4+φ4)
经过FFT之后,得到的“振幅图”中,
第一个峰值(频率位置)的模是 A 1 \mathbf{A_1} A1的N倍,N为采样点,本例中为N=1400,此例中没有,因为信号没有常数项 A 1 \mathbf{A_1} A1
第二个峰值(频率位置)的模是 A 2 \mathbf{A_2} A2的N/2倍,N为采样点,
第三个峰值(频率位置)的模是 A 3 \mathbf{A_3} A3的N/2倍,N为采样点,
第四个峰值(频率位置)的模是 A 4 \mathbf{A_4} A4的N/2倍,N为采样点,
依次下去…
考虑到数量级较大,一般进行归一化处理,既然第一个峰值是A1的N倍,那么将每一个振幅值都除以N即可
FFT具有对称性,一般只需要用N的一半,前半部分即可。

下面是数据归一化之后的图像:
在这里插入图片描述

可以看出双边频谱图在归一化的情况下和未归一化的图一样,可能是我的数据量比较少导致的。
附上使用数据部分的放大图:
在这里插入图片描述

接下来可能要更新的内容:
常见的混沌映射汇总:(转载来源:https://blog.csdn.net/weixin_45353822/article/details/105524296)
这一部分对现在的我来说十分困难,各种理论基础还不够扎实,只能先说一些我能想到的问题。
1.什么是混沌?为什么要研究混沌性?
\qquad 混沌(chaos)是指确定性动力学系统因对初值敏感而表现出的不可预测的、类似随机性的运动。又称浑沌。英语词Chaos源于希腊语,原始含义是宇宙初开之前的景象,基本含义主要指混乱、无序的状态。作为科学术语,混沌一词特指一种运动形态。
\qquad 动力学系统的确定性是一个数学概念,指系统在任一时刻的状态被初始状态所决定。虽然根据运动的初始状态数据和运动规律能推算出任一未来时刻的运动状态,但由于初始数据的测定不可能完全精确,预测的结果必然出现误差,甚至不可预测。运动的可预测性是一个物理概念。一个运动即使是确定性的,也仍可为不可预测的,二者并不矛盾。牛顿力学的成功,特别是它在预言海王星上的成功,在一定程度上产生误解,把确定性和可预测性等同起来,以为确定性运动一定是可预测的。20世纪70年代后的研究表明,大量非线性系统中尽管系统是确定性的,却普遍存在着对运动状态初始值极为敏感、貌似随机的不可预测的运动状态——混沌运动。
\qquad 混沌是指现实世界中存在的一种貌似无规律的复杂运动形态。共同特征是原来遵循简单物理规律的有序运动形态,在某种条件下突然偏离预期的规律性而变成了无序的形态。混沌可在相当广泛的一些确定性动力学系统中发生。混沌在统计特性上类似于随机过程,被认为是确定性系统中的一种内禀随机性。
\qquad 混沌运动、奇异吸引子、通向混沌道路等概念的提出,开阔了理论和实验工作者的思路。从20世纪80年代开始,在等离子体放电系统、非线性电路、声学和声光耦合系统、激光器和光双稳态装置、化学振荡反应、动物心肌细胞的强迫振动、野生动物种群的数目消长、人类脑电波信号乃至社会经济活动等领域内到处发现混沌,显示出混沌运动是许多非线性系统的典型行为。作为非线性科学主要研究领域,混沌研究的主要方向集中在如下几个方面:①时空混沌;②量子混沌;③混沌运动的进一步分类;④混沌吸引子的精细刻画;⑤混沌的同步和控制等。(本人主要研究升学方面的混沌性)
\qquad 对混沌的研究虽已有一些严格的数学方法,但大量的研究主要依靠计算机数值实验。混沌的研究和许多学科有关。在分析力学中,运用KAM定理可判断一类近似可积的哈密顿系统(一种非线性动力学系统)中能否出现混沌运动。开放系统的混沌运动的研究与耗散结构理论有密切联系。混沌的研究与协同学也紧密相关,两者都研究系统由有序向无序和由无序向有序的转化。在系统科学中,也日益重视对混沌的研究。对混沌研究的应用前景还有待进一步揭示。混沌现象的发现还使人们对于认识确定论与随机论之间的关系得到新的启示。
\qquad 从我的研究方向上来说,研究混沌性,使人们看到普遍存在于自然界而长期视而不见的一种运动形式,从而理解过去难以理解的许多现象。如1977年后曾发现,放在微波谐振腔中的超导隧道结随着增益的提高出现反常噪声,在4K低温下进行的实验中噪声的等效温度高达5×104K以上,这是用当时已知的任何机制都无法解释的。后来明白这是系统进入了混沌区,噪声来自动力学本身。
2.混沌有哪些特性呢?
\qquad (1)随机性:体系处于混沌状态是由体系内部动力学随机性产生的不规则性行为,常称之为内随机性.例如,在一维非线性映射中,即使描述系统演化行为的数学模型中不包含任何外加的随机项,即使控制参数、初始值都是确定的,而系统在混沌区的行为仍表现为随机性。这种随机性自发地产生于系统内部,与外随机性有完全不同的来源与机制,显然是确定性系统内部一种内在随机性和机制作用。体系内的局部不稳定是内随机性的特点,也是对初值敏感性的原因所在。
\qquad (2)敏感性:系统的混沌运动,无论是离散的或连续的,低维的或高维的,保守的或耗散的。时间演化的还是空间分布的,均具有一个基本特征,即系统的运动轨道对初值的极度敏感性。这种敏感性,一方面反映出在非线性动力学系统内,随机性系统运动趋势的强烈影响;另一方面也将导致系统长期时间行为的不可预测性。气象学家洛仑兹提出的所谓"蝴蝶效应"就是对这种敏感性的突出而形象的说明。
\qquad (3)分维性:混沌具有分维性质,是指系统运动轨道在相空间的几何形态可以用分维来描述。例如Koch雪花曲线的分维数是1.26;描述大气混沌的洛伦兹模型的分维数是2.06体系的混沌运动在相空间无穷缠绕、折叠和扭结,构成具有无穷层次的自相似结构。
\qquad (4)普适性:当系统趋于混沌时,所表现出来的特征具有普适意义。其特征不因具体系统的不同和系统运动方程的差异而变化。这类系统都与费根鲍姆常数相联系。这是一个重要的普适常数δ=4.669201609l0299097…
\qquad (5)标度律:混沌现象是一种无周期性的有序态,具有无穷层次的自相似结构,存在无标度区域。只要数值计算的精度或实验的分辨率足够高,则可以从中发现小尺寸混沌的有序运动花样,所以具有标度律性质。例如,在倍周期分叉过程中,混沌吸引子的无穷嵌套相似结构,从层次关系上看,具有结构的自相似,具备标度变换下的结构不变性,从而表现出有序性。
3.混沌性的检测(控制)方法有哪些?
\qquad 混沌控制方法有两种,一是通过合适的策略、方法及途径,有效地抑制混沌行为,使李雅普诺夫指数下降进而消除混沌;二是选择某一具有期望行为的轨道作为控制目标。一般情况下,在混沌吸引子中的无穷多不稳定的周期轨道常被作为首选目标,其目的就是将系统的混沌运动轨迹转换到期望的周期轨道上。不同的控制策略必须遵循这样的原则:控制律的设计须最小限度的改变原系统,从而对原系统的影响最小。从这个观点来看,控制方式可以分为两类:反馈控制和非反馈控制。反馈控制是一种十分成熟而且应用广泛的工程设计技术,它主要利用混沌系统的本质特征,如对于初始点的敏感依赖性,来稳定已经存在于系统中的不稳定轨道。一般来说,反馈控制的优点在于不需要使用除系统输出或状态以外的任何有关给定被控系统的信息,不改变被控系统的结构,具有良好的轨道跟踪能力和稳定性。其缺点在于要求一个比较精确的数学模型和输入目标函数或轨道,在只存在观测数据而没有数学方程时不能直接使用。**和反馈控制方式相比,非反馈控制主要利用一个小的外部扰动,如一个小驱动信号、噪声信号、常量偏置或系统参数的弱调制来控制混沌,该控制方式的设计和使用都十分简单,但无法确保控制过程的稳定性。这两种方式都是通过混沌动力学系统的稍微改变来求得系统的稳定解。**在控制混沌的实现中,最大限度地利用混沌的特性,对于确定控制目标和选取控制方法非常关键。混沌控制的基本方法有:OGY方法、连续反馈控制法(外力反馈控制法和延迟反馈控制法)、自适应控制法以及智能控制法(神经网络和模糊控制)等。(目前的遇到的最大问题就是不知道如何实现运用上述的各种方法)
下面运用python实现切比雪夫(chebyshev)映射混沌图形(初值设置为0.7,迭代500次,其他参数依据混沌映射改变):
详细代码:

def Chebyshevmap1(x0, max_g):
    """
    Chebyshev 映射
    :param x0: 初值
    :param max_g:最大迭代次数
    :return: x的列表
    """
    x = x0
    x_list = []
    for i in max_g:
        x = math.cos(i * math.cos(x) ** (-1))
        x_list.append(x)
    return x_list
    

运行结果:
在这里插入图片描述
补充:
切比雪夫定理:设 X X X是一个随机变数取区间 ( 0 , ∞ ) (0,\infty) (0,)上的值, F ( x ) F(x) F(x)是它的分布函数,设 X α ( α > 0 ) X^\alpha(\alpha >0) Xαα>0的数学期望 M ( X α ) M(X^\alpha) M(Xα)存在,a>0,则不等式成立。这叫做切比雪夫定理,或者切比雪夫不等式。
Chebyshev混沌映射:
\qquad \qquad \qquad \qquad \qquad \qquad x k + 1 = c o s ( k c o s − 1 ( x k ) ) x_{k+1} = cos(kcos^{-1}(x_k)) xk+1=cos(kcos1(xk))

混沌性先放一放,太难了。。。
2021.12.6更新
本次更新绘制了背景噪声以外的部分噪声(同一道)的频谱图、相位图和振幅图的绘制。
我们仍选取第一道的数据,初至以后的噪声选择为500-520行的噪声数据,具体如图。
在这里插入图片描述在这里插入图片描述

下面进行各种图像的绘制。
傅里叶变换画出频谱图

在这里插入图片描述
原始波形
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

分析:
1.背景噪声部分的信号起伏比初至以后的信号更加明显。
2.从原始波形来看,背景噪声信号显得无规则波动,而初至以后的信号波形虽然起伏较大,但变化更加光滑。
3.从单边频谱图来看,初至以后的信号能量更大,达到波峰后区域平缓,而背景噪声在达到波峰后,仍有明显波动。能量差别我认为是放炮的能量更大(显而易见)。
4.总得来说,背景噪声出现一种无规则的能量变化,主要原因我认为是周边环境的不确定性,多种因素导致这种情况发生。振幅谱出现0的情况是因为在此频率区间不存在相关频率的振幅。
(具体为什么导致种种差异还需要继续学习研究,相位谱暂时不知道怎么分析)

在这里插入图片描述(加速度谱、位移谱和速度谱,不知道对不对)

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
背景噪声的计算方法可以包括以下几个步骤。首先,需要进行纹理强度分析,即对信号的纹理特征进行分析,以确定噪声的强度。其次,进行噪声强度估计,即对信号中的噪声进行估计,可以使用统计方法或者滤波方法来进行估计。然后,进行噪声阈值判定,即确定一个阈值来判断信号中的噪声部分。接下来,生成区分信号与噪声的边界权重,可以根据信号与噪声的特征来生成权重,以便后续的降噪处理。最后,根据倾向因子来决定对信号的降噪和不降噪的处理。综合这些子算法,可以得到针对彩噪的降噪算法。\[1\] 需要注意的是,以上提到的计算方法是一种常见的处理流程,具体的计算方法可能会因应用场景和具体需求而有所不同。因此,在实际应用中,可能需要根据具体情况进行适当的调整和改进。\[1\] #### 引用[.reference_title] - *1* [Understanding ISP Pipeline - Noise Reduction](https://blog.csdn.net/sunshineywz/article/details/109655374)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [初至背景噪声](https://blog.csdn.net/m0_55846947/article/details/121336131)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值