电商精准营销—购买意向预测

第1关:随机森林模型

任务描述

本关任务:根据要求,建立随机森林模型。

相关知识

为了完成本关任务,你需要掌握:

1.理解随机森林模型的原理,确定随机森林的树的个数;

2.使用 sklearn 包搭建随机森林模型。

#coding:utf8
import warnings
warnings.filterwarnings("ignore")
from numpy.core.umath_tests import inner1d
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import auc,roc_auc_score,roc_curve
import pandas as pd

def return_train_test(data):
    x=data.drop(['user_id','mark','Y'],axis=1)
    y=data['Y']
    train_x,test_x,train_y,test_y=train_test_split(x,y,test_size=0.3)
    return train_x,test_x,train_y,test_y
    
def model(train_x,test_x,train_y,test_y):
    rf=RandomForestClassifier()
    rf.fit(train_x,train_y)
    y_test_predit=rf.predict_proba(test_x)[:,1]
    fpr,tpr,thresholds=roc_curve(test_y,y_test_predit)
    predit_auc=auc(fpr,tpr)
    return predit_auc

第2关:随机森林模型调参

任务描述

本关任务:对随机森林模型进行调参,使得模型最优。

相关知识

为了完成本关任务,你需要掌握: 1.随机森林模型原理; 2.网格搜索调参技巧。

#coding:utf8
from numpy.core.umath_tests import inner1d
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
import numpy as np
from sklearn.model_selection import GridSearchCV

def grid_best_param(x,y):
    grid_params={'max_depth':[1,3,5,7,10],'min_samples_leaf':[1,3,5,7,10]}
    rf=RandomForestClassifier(n_estimators=21,random_state=20)
    grid=GridSearchCV(rf,grid_params,cv=10)
    grid.fit(x,y)
    best_param=grid.best_params_

    return best_param

第3关:模型评价

任务描述

本关任务:对调参后的模型结果进行评价。

相关知识

为了完成本关任务,你需要掌握:评价模型的方法。

#coding:utf8
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.metrics import auc,roc_auc_score,roc_curve

def evaluation_model(model,x,y):
    fig=plt.figure(figsize=(20,6))   
    y_pred=model.predict_proba(x)[:,1]
    fpr,tpr,thresholds=roc_curve(y,y_pred)
    auc_c=auc(fpr,tpr)
    ax=plt.subplot(1,2,1)
    plt.plot(fpr,tpr,label='ROC,AUC=%0.2f'%auc_c)
    plt.plot([0,1],[0,1])
    plt.title('ROC')
    plt.xlabel('FPR')
    plt.ylabel('TPR')
    plt.legend()
    ks=max(tpr-fpr)
    plt.subplot(1,2,2)
    plt.plot(fpr,label='fpr')
    plt.plot(tpr,label='tpr')
    plt.plot(tpr-fpr,label='k-s:ks=%0.2f'%ks)
    plt.legend()
    plt.title('K-S')
    plt.ylabel('rate')    
    plt.savefig('./step3/step3.png')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值