Acwing 788 逆序对的数量

原题链接icon-default.png?t=M85Bhttps://www.acwing.com/problem/content/description/790/

题目概述

给定一个长度为 n的整数数列,请你计算数列中的逆序对的数量。

逆序对的定义如下:对于数列的第 i 个和第 j 个元素,如果满足 i<ja[i]>a[j],则其为一个逆序对;否则不是。

输入格式

第一行包含整数 n,表示数列的长度。

第二行包含 n 个整数,表示整个数列。

输出格式

输出一个整数,表示逆序对的个数。

数据范围

1 ≤ n ≤ 100000 数列中的元素的取值范围 [1,109]

输入样例:

 6
 2 3 4 5 6 1

输出样例:

 5

题解

思路

  • 第一感觉是用双重循环暴力法求解,但是会超时。

  • 后看yxc题解后理解利用归并排序的过程性质求解此题。

问题分析

所谓逆序对,就是数列里的一对数,其中较小下标数的值大于较大下标数的值。

mid(l + r) / 2,则可以把所有逆序对分为三类。

  1. 两个数都在[l,mid]区间里;

  2. 两个数都在[mid+1,r]区间里;

  3. 一个数在[l,mid]区间,另一个数在[mid+1,r]区间。

所以我们可以分别求解这三类逆序对的个数,最终相加得到结果。

归并排序中似乎有一些过程性质可供我们利用:

  1. 先对左边一半进行排序

  2. 再对右边一半进行排序

  3. 最后把这两半合为一个数列

如果我们能在①过程中求出第一类逆序对,②过程中求出第二类逆序对,③过程中求出第三类逆序对,则可以利用归并排序求解此问题。

代码

 #include<stdio.h>
 #include<iostream>
 using namespace std;
 ​
 long long ReversePairs(int a[],int l,int r){
     if( l >= r) return 0;
     int mid = (l+r) >> 1;
     //下面一行代码求出前两类逆序对
     long long res = ReversePairs(a,l,mid) + ReversePairs(a,mid+1,r);
     int i = l;int j = mid + 1;int k = 0;
     int tmp[100000];
     while(i <= mid && j <= r){
         //每次输出a[i]时,都要计算以a[i]作为第一个数的逆序对个数
         if(a[i] <= a[j]){
             tmp[k++] = a[i++];
             res += j - mid - 1;
         }
         else    tmp[k++] = a[j++];
     }
     while(i <= mid){
         //扫尾过程中,若是上半序列没有扫完,需要补上剩余元素开头的逆序对
         tmp[k++] = a[i++];
         res += r - mid; 
     };
     while(j <= r)   tmp[k++] = a[j++];
     
     for(i = l,j = 0; i <= r;i++,j++)   a[i] = tmp[j];
     
     return res; 
 }
 ​
 ​
 int main(){
     int n;int a[100000];
     scanf("%d",&n);
     for(int i = 0;i < n;i++)    scanf("%d",&a[i]);
     
     cout <<ReversePairs(a,0,n-1) << ends;
 }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值