原题链接https://www.acwing.com/problem/content/description/790/
题目概述
给定一个长度为 n
的整数数列,请你计算数列中的逆序对的数量。
逆序对的定义如下:对于数列的第 i
个和第 j
个元素,如果满足 i<j
且 a[i]>a[j]
,则其为一个逆序对;否则不是。
输入格式
第一行包含整数 n
,表示数列的长度。
第二行包含 n
个整数,表示整个数列。
输出格式
输出一个整数,表示逆序对的个数。
数据范围
1 ≤ n ≤ 100000
数列中的元素的取值范围 [1,109]
。
输入样例:
6 2 3 4 5 6 1
输出样例:
5
题解
思路
-
第一感觉是用双重循环暴力法求解,但是会超时。
-
后看yxc题解后理解利用归并排序的过程性质求解此题。
问题分析
所谓逆序对,就是数列里的一对数,其中较小下标数的值大于较大下标数的值。
设mid
为(l + r) / 2
,则可以把所有逆序对分为三类。
-
两个数都在
[l,mid]
区间里; -
两个数都在
[mid+1,r]
区间里; -
一个数在
[l,mid]
区间,另一个数在[mid+1,r]
区间。
所以我们可以分别求解这三类逆序对的个数,最终相加得到结果。
归并排序中似乎有一些过程性质可供我们利用:
-
先对左边一半进行排序
-
再对右边一半进行排序
-
最后把这两半合为一个数列
如果我们能在①过程中求出第一类逆序对,②过程中求出第二类逆序对,③过程中求出第三类逆序对,则可以利用归并排序求解此问题。
代码
#include<stdio.h> #include<iostream> using namespace std; long long ReversePairs(int a[],int l,int r){ if( l >= r) return 0; int mid = (l+r) >> 1; //下面一行代码求出前两类逆序对 long long res = ReversePairs(a,l,mid) + ReversePairs(a,mid+1,r); int i = l;int j = mid + 1;int k = 0; int tmp[100000]; while(i <= mid && j <= r){ //每次输出a[i]时,都要计算以a[i]作为第一个数的逆序对个数 if(a[i] <= a[j]){ tmp[k++] = a[i++]; res += j - mid - 1; } else tmp[k++] = a[j++]; } while(i <= mid){ //扫尾过程中,若是上半序列没有扫完,需要补上剩余元素开头的逆序对 tmp[k++] = a[i++]; res += r - mid; }; while(j <= r) tmp[k++] = a[j++]; for(i = l,j = 0; i <= r;i++,j++) a[i] = tmp[j]; return res; } int main(){ int n;int a[100000]; scanf("%d",&n); for(int i = 0;i < n;i++) scanf("%d",&a[i]); cout <<ReversePairs(a,0,n-1) << ends; }