原题链接https://www.acwing.com/problem/content/791/
给定一个按照升序排列的长度为 n 的整数数组,以及 q 个查询。
对于每个查询,返回一个元素 k 的起始位置和终止位置(位置从 0 开始计数)。
如果数组中不存在该元素,则返回 -1 -1
。
输入格式
第一行包含整数 n 和 q,表示数组长度和询问个数。
第二行包含 n 个整数(均在1∼10000 范围内),表示完整数组。
接下来 q 行,每行包含一个整数 k,表示一个询问元素。
输出格式
共 q 行,每行包含两个整数,表示所求元素的起始位置和终止位置。
如果数组中不存在该元素,则返回 -1 -1
。
数据范围
1≤n≤100000
1≤q≤10000
1≤k≤10000
输入样例:
6 3
1 2 2 3 3 4
3
4
5
输出样例:
3 4
5 5
-1 -1
思路
利用二分法查找出元素k
的左右边界。求拥有拥有大于等于k
性质数的左边界和小于等于k
性质数的右边界。这两个边界所构成的区间就是k
的起始位置和终止位置。
代码
#include<stdio.h>
#include<iostream>
using namespace std;
int main(){
int n,q;
scanf("%d %d",&n,&q);
int a[n];
for(int i = 0;i < n;i++) scanf("%d",&a[i]);
while(q--){
int tar;
scanf("%d",&tar);
int l = 0,r = n-1;
//求第一个大于等于tar的位置
while(l < r){
int mid = (l+r) >> 1;
if(a[mid] >= tar) r = mid;
else l = mid + 1;
}
//如果第一个大于等于tar的位置上的数不是tar,说明tar不存在,输出-1 -1,
//否则求第一个小于等于tar的位置
if(a[l] != tar) cout<< "-1 -1" << endl;
else{
cout << r << " ";
int l = 0,r = n-1;
while(l < r){
int mid = (l+r+1) >> 1;
if(a[mid] <= tar) l = mid;
else r = mid - 1;
}
cout << r << endl;
}
}
return 0;
}