二叉排序树

本文介绍了二叉排序树的概念,包括如何从数组创建二叉排序树并进行中序遍历。同时,详细讨论了删除操作的三种情况:删除叶子节点、删除只有一个子节点的节点和删除有两个子节点的节点,提供了相应的删除策略。通过示例代码展示了在Java中实现这些操作的方法。
摘要由CSDN通过智能技术生成

二叉排序树介绍

二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大

特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点

比如 (7, 3, 10, 12, 5, 1, 9,2) ,对应的二叉排序树为:

二叉排序树建和遍历

一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树

二叉排序树删除

二叉排序树的删除情况比较复杂,有下面三种情况需要考虑

1)删除叶子节点 (比如:2, 5, 9, 12)

2)除只有一颗子树的节点 (比如:1)

3)除有两颗子树的节点. (比如:7, 310 )

对删除结点的各种情况的思路分析:
第一种情况:删除叶子节点 (比如:2,5,9,12)
思路:

(1) 先去找到要删除的结点  targetNode
(2)找到targetNode的父结点  parent
(3) 确定 targetNode 是 parent 的左子结点 还是右子结点
(4) 根据前面的情况来对应删除
左子结点  parent.left = null,右子结点  parent.right = null;


第二种情况: 删除只有一颗子树的节点 比如 1
思路:

(1) 需求先去找到要删除的结点  targetNode

(2)找到targetNode的父结点  parent
(3)确定targetNodee 的子结点是左子结点还是右子结点
(4)targetNode是parent的左子结点还是右子结点
(5) 如果 targetNode 有左子结点

首先判断要删除的是否为根节点

如果不是:
5.1 如果targetNode 是 parent 的左子结点-->parent.left = targetNode.left;
5.2 如果targetNode 是parent的右子结点-->parent right = targetNode left;

如果是:直接把其左子结点的值赋给根节点

root=tnode.left;
(6) 如果targetNode 有右子结点

首先判断要删除的是否为根节点

如果不是:
6.1 如果targetNode 是 parent的左子结点-->parent.left = targetNode.right;
6.2 如果targetNode 是parent 的右子结点-->parent.right = targetNode.right

如果是:直接把其右子结点的值赋给根节点

root=tnode.right;


情况三 : 删除有两颗子树的节点.(比如:7,3,10)
思路:

(1) 先去找到要删除的结点targetNode

(2)找到 targetNode的 父结点parent
(3) 从 targetNode 的右子树找到最小的结点
(4) 用一个临时变量,将 最小结点的值保存temp = 11
(5)删除该最小结点->targetNode.value = temp

package com.zhen;

public class SortTree {

	public static void main(String[] args) {
		int[] arr= {7, 3, 10, 12, 5, 1, 9,2};
		Tree tree = new Tree();
		//循环将节点加入二叉排序树
		for (int i = 0; i < arr.length; i++) {
			tree.add(new Node(arr[i]));
		}
		//中序遍历
		System.out.println("中序遍历");
		tree.midOrder();
		
		tree.del(9);
		System.out.println("删除叶子节点:");
		tree.midOrder();
		
		tree.del(1);
		System.out.println("删除一个子节点的节点:");
		tree.midOrder();
		
		tree.del(10);
		System.out.println("删除两个子节点的节点:");
		tree.midOrder();
	}

}
//创建二叉排序树
class Tree{
	private Node root;
	
	//添加节点
	public void add(Node node) {
		if (root == null) {
			root = node;
		}else {
			root.add(node);
		}
	}
	
	//中序遍历
	public void midOrder() {
		if (root != null) {
			root.midOrder();
		}else {
			System.out.println("空");
		}
	}
	
	
	//查找要删除的节点
	public Node search(int value) {
		if (root == null) {
			return null;
		}else {
			return root.search(value);
		}
	}
	
	
	//查找要删除的父节点
	public Node searchParent(int value) {
		if (root == null) {
			return null;
		}else {
			return root.searchParent(value);
		}
	}
	
	
	//删除节点
	public void del(int value) {
		if (root == null) {
			return;
		}else {
			//找到要删除的节点
			Node tnode=search(value);
			//如果没有找到
			if (tnode == null) {
				return;
			}
			//如果该二叉树只有一个节点
			if (root.left==null&&root.right == null) {
				root=null;
				return;
			}
			//找到要删除节点的父节点
			Node parent=searchParent(value);
			
			
			//1  如果要删除的是叶子节点
			if (tnode.left==null&&tnode.right == null) {
				//是左子节点
				if (parent.left != null&&parent.left.value==value) {
					parent.left=null;
				}
				//是右子节点
				if (parent.right != null&&parent.right.value==value) {
					parent.right=null;
				}
				
				
			//2  删的是有两个子节点的节点
			}else if (tnode.left!=null&&tnode.right != null) {
				int minVal=delmin(tnode.right);
				tnode.value=minVal;
				
				
			//3  一共有三种删除情况排除上面上面两种只剩:删除有一个子节点的节点这种情况
			}else {
				//如果要删除的节点有左子节点
				if (tnode.left != null) {
					//判断要删除的是否为根节点
					if (parent!=null) {
						//如果要删除的节点是parent的左子节点
						if (parent.left.value == value) {
							parent.left = tnode.left;
						}else {
							parent.right=tnode.right;
						}
					}else {
						root=tnode.left;
					}
				//如果要删除的节点有右子节点
				}else {
					//判断要删除的是否为根节点
					if (parent != null) {
						if (parent.left.value == value) {
							parent.left = tnode.right;
						}else {
							parent.right=tnode.right;
						}
					}else {
						root=tnode.right;
					}
				}
			}
		}
	}
	
	/**
	 * 删除以node为根节点的二叉树的最小节点
	 * @param node  传入的节点(当做二叉排序树的根节点)
	 * @return  返回以node为根节点的最小节点的值
	 */
	public int delmin(Node node) {
		Node tnode=node;
		//循环查找左子节点,找到最小值
		while (tnode.left != null) {
			tnode=tnode.left;
		}
		//删除最小节点
		del(tnode.value);
		return tnode.value;
	}
}


class Node{
	int value;
	Node left;
	Node right;
	public Node(int value) {
		super();
		this.value = value;
	}
	
	@Override
	public String toString() {
		return "Node [value=" + value + "]";
	}

	 
	//递归添加节点
	public void add(Node node) {
		if (node == null) {
			return;
		}
		//判断传入节点和当前节点的值关系,小于放在左子树,否则放在右子树
		if (node.value<this.value) {
			//左子树为空则直接放入
			if (this.left == null) {
				this.left = node;
			}else {
				//不为空则递归放入
				this.left.add(node);;
			}
		}else {
			if (this.right == null) {
				this.right = node;
			}else {
				this.right.add(node);;
			}
		}
	}
	
	
	//中序遍历
	public void midOrder() {
		if (this.left != null) {
			this.left.midOrder();
		}
		System.out.println(this);
		if (this.right != null) {
			this.right.midOrder();
		}
	}
	
	
	/**
	 * 查找要删除的节点
	 * @param value  希望删除节点的值
	 * @return  如果找到则返回该节点,否则返回null
	 */
	public Node search(int value) {
		if (value==this.value) {
			return this;
			//小于向左子树查找
		}else if (value <= this.value){
			if (this.left==null) {
				return null;
			}
			//递归向左
			return this.left.search(value);
		}else {
			if (this.right==null) {
				return null;
			}
			return this.right.search(value);
		}
	}
	
	/**
	 * 查找要删除节点的父节点
	 * @param value
	 * @return
	 */
	public Node searchParent(int value) {
		//如果当前节点就是要删除的父节点就返回
		if ((this.left != null&&this.left.value==value)||
			 this.right != null&&this.right.value==value) {
			return this;
		}else {
			//向左子树递归查找
			if (value < this.value&&this.left!=null) {
				return this.left.searchParent(value);
				//向右子树递归查找
			}else if (value >= this.value&&this.right!=null) {
				return this.right.searchParent(value);
			}else {
				return null;
			}
		}
	}
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

1while(true){learn}

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值