二叉排序树介绍
二叉排序树:BST: (Binary Sort(Search) Tree), 对于二叉排序树的任何一个非叶子节点,要求左子节点的值比当前节点的值小,右子节点的值比当前节点的值大。
特别说明:如果有相同的值,可以将该节点放在左子节点或右子节点
比如 (7, 3, 10, 12, 5, 1, 9,2) ,对应的二叉排序树为:
二叉排序树创建和遍历
一个数组创建成对应的二叉排序树,并使用中序遍历二叉排序树
二叉排序树的删除
二叉排序树的删除情况比较复杂,有下面三种情况需要考虑
1)删除叶子节点 (比如:2, 5, 9, 12)
2)删除只有一颗子树的节点 (比如:1)
3)删除有两颗子树的节点. (比如:7, 3,10 )
对删除结点的各种情况的思路分析:
第一种情况:删除叶子节点 (比如:2,5,9,12)
思路:
(1) 先去找到要删除的结点 targetNode
(2)找到targetNode的父结点 parent
(3) 确定 targetNode 是 parent 的左子结点 还是右子结点
(4) 根据前面的情况来对应删除
左子结点 parent.left = null,右子结点 parent.right = null;
第二种情况: 删除只有一颗子树的节点 比如 1
思路:
(1) 需求先去找到要删除的结点 targetNode
(2)找到targetNode的父结点 parent
(3)确定targetNodee 的子结点是左子结点还是右子结点
(4)targetNode是parent的左子结点还是右子结点
(5) 如果 targetNode 有左子结点
首先判断要删除的是否为根节点
如果不是:
5.1 如果targetNode 是 parent 的左子结点-->parent.left = targetNode.left;
5.2 如果targetNode 是parent的右子结点-->parent right = targetNode left;
如果是:直接把其左子结点的值赋给根节点
root=tnode.left;
(6) 如果targetNode 有右子结点
首先判断要删除的是否为根节点
如果不是:
6.1 如果targetNode 是 parent的左子结点-->parent.left = targetNode.right;
6.2 如果targetNode 是parent 的右子结点-->parent.right = targetNode.right
如果是:直接把其右子结点的值赋给根节点
root=tnode.right;
情况三 : 删除有两颗子树的节点.(比如:7,3,10)
思路:
(1) 先去找到要删除的结点targetNode
(2)找到 targetNode的 父结点parent
(3) 从 targetNode 的右子树找到最小的结点
(4) 用一个临时变量,将 最小结点的值保存temp = 11
(5)删除该最小结点->targetNode.value = temp
package com.zhen;
public class SortTree {
public static void main(String[] args) {
int[] arr= {7, 3, 10, 12, 5, 1, 9,2};
Tree tree = new Tree();
//循环将节点加入二叉排序树
for (int i = 0; i < arr.length; i++) {
tree.add(new Node(arr[i]));
}
//中序遍历
System.out.println("中序遍历");
tree.midOrder();
tree.del(9);
System.out.println("删除叶子节点:");
tree.midOrder();
tree.del(1);
System.out.println("删除一个子节点的节点:");
tree.midOrder();
tree.del(10);
System.out.println("删除两个子节点的节点:");
tree.midOrder();
}
}
//创建二叉排序树
class Tree{
private Node root;
//添加节点
public void add(Node node) {
if (root == null) {
root = node;
}else {
root.add(node);
}
}
//中序遍历
public void midOrder() {
if (root != null) {
root.midOrder();
}else {
System.out.println("空");
}
}
//查找要删除的节点
public Node search(int value) {
if (root == null) {
return null;
}else {
return root.search(value);
}
}
//查找要删除的父节点
public Node searchParent(int value) {
if (root == null) {
return null;
}else {
return root.searchParent(value);
}
}
//删除节点
public void del(int value) {
if (root == null) {
return;
}else {
//找到要删除的节点
Node tnode=search(value);
//如果没有找到
if (tnode == null) {
return;
}
//如果该二叉树只有一个节点
if (root.left==null&&root.right == null) {
root=null;
return;
}
//找到要删除节点的父节点
Node parent=searchParent(value);
//1 如果要删除的是叶子节点
if (tnode.left==null&&tnode.right == null) {
//是左子节点
if (parent.left != null&&parent.left.value==value) {
parent.left=null;
}
//是右子节点
if (parent.right != null&&parent.right.value==value) {
parent.right=null;
}
//2 删的是有两个子节点的节点
}else if (tnode.left!=null&&tnode.right != null) {
int minVal=delmin(tnode.right);
tnode.value=minVal;
//3 一共有三种删除情况排除上面上面两种只剩:删除有一个子节点的节点这种情况
}else {
//如果要删除的节点有左子节点
if (tnode.left != null) {
//判断要删除的是否为根节点
if (parent!=null) {
//如果要删除的节点是parent的左子节点
if (parent.left.value == value) {
parent.left = tnode.left;
}else {
parent.right=tnode.right;
}
}else {
root=tnode.left;
}
//如果要删除的节点有右子节点
}else {
//判断要删除的是否为根节点
if (parent != null) {
if (parent.left.value == value) {
parent.left = tnode.right;
}else {
parent.right=tnode.right;
}
}else {
root=tnode.right;
}
}
}
}
}
/**
* 删除以node为根节点的二叉树的最小节点
* @param node 传入的节点(当做二叉排序树的根节点)
* @return 返回以node为根节点的最小节点的值
*/
public int delmin(Node node) {
Node tnode=node;
//循环查找左子节点,找到最小值
while (tnode.left != null) {
tnode=tnode.left;
}
//删除最小节点
del(tnode.value);
return tnode.value;
}
}
class Node{
int value;
Node left;
Node right;
public Node(int value) {
super();
this.value = value;
}
@Override
public String toString() {
return "Node [value=" + value + "]";
}
//递归添加节点
public void add(Node node) {
if (node == null) {
return;
}
//判断传入节点和当前节点的值关系,小于放在左子树,否则放在右子树
if (node.value<this.value) {
//左子树为空则直接放入
if (this.left == null) {
this.left = node;
}else {
//不为空则递归放入
this.left.add(node);;
}
}else {
if (this.right == null) {
this.right = node;
}else {
this.right.add(node);;
}
}
}
//中序遍历
public void midOrder() {
if (this.left != null) {
this.left.midOrder();
}
System.out.println(this);
if (this.right != null) {
this.right.midOrder();
}
}
/**
* 查找要删除的节点
* @param value 希望删除节点的值
* @return 如果找到则返回该节点,否则返回null
*/
public Node search(int value) {
if (value==this.value) {
return this;
//小于向左子树查找
}else if (value <= this.value){
if (this.left==null) {
return null;
}
//递归向左
return this.left.search(value);
}else {
if (this.right==null) {
return null;
}
return this.right.search(value);
}
}
/**
* 查找要删除节点的父节点
* @param value
* @return
*/
public Node searchParent(int value) {
//如果当前节点就是要删除的父节点就返回
if ((this.left != null&&this.left.value==value)||
this.right != null&&this.right.value==value) {
return this;
}else {
//向左子树递归查找
if (value < this.value&&this.left!=null) {
return this.left.searchParent(value);
//向右子树递归查找
}else if (value >= this.value&&this.right!=null) {
return this.right.searchParent(value);
}else {
return null;
}
}
}
}