分解质因数
给定 n 个正整数 ai,将每个数分解质因数,并按照质因数从小到大的顺序输出每个质因数的底数和指数。
做法和试除法判定质数是一致的,都是从i=2开始枚举,找到一个因数就开始不停的除,直到无法整除,结论除的次数,即为该因数的指数。
接下来看代码:
void decp(int x)
{
/*这里要知道一个性质,就是n的所有因子中最多只有一个是大于sqrt(n)的,因为如果有两个的话,相乘肯定大于n了
因为n就是可以写成质因数相乘的形式,所以我们还是可以只遍历到n/i,最后对n特判一下,如果n是大于1的,那么此时的n就是那个
大于sqrt(n)的质因子了*/
//if(n == 1) puts("1 1");这是不需要的,因为求的是质因数
for(int i = 2; i <= x / i; i ++){
if(x % i == 0){/*这一行不是枚举的所有因数吗,但是我们要的是质因数,这样做会不会出错呢?
其实不会,因为当我们枚举到i的时候,说明2~i-1已经枚举完了,这个时候说明2~i-1已经没有了n的质数,
假设i不是质因数,那么在2~i-1中就一定会有i的因子,但是这个时候n%i==0,这样说明i是n的因子,那么i的因子也一定是n的因子
这与之前2~i-1没有n的质因子的推理矛盾*/
int e = 0;
while(x % i == 0){
e ++;
x /= i;
}
printf("%d %d\n", i, e);
}
}
if(x > 1) printf("%d %d\n", x, 1);
}