原题:
题目详情 - 【例3.6】过河卒(Noip2002) - ACjudge
题目描述
棋盘上 A点有一个过河卒,需要走到目标 B点。卒行走的规则:可以向下、或者向右。同时在棋盘上 C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。
棋盘用坐标表示,A 点 (0,0)(0,0)、B 点 (,)(n,m),同样马的位置坐标是需要给出的。
现在要求你计算出卒从 A点能够到达 B点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。
输入格式
一行四个正整数,分别表示 B点坐标和马的坐标。
输出格式
一个整数,表示所有的路径条数。
分析:
对于这道题,我们可以很轻松地想到动态规划,只要不让过河卒走受马管理的区域,就是一个典型的模版题,让过河卒走受马管理的区域可以通过对马管理的区域处可提供的方案数赋值为0的方式,也就是没有走到这里的方案数,另外再循环时跳过这些点就可以.下面是关于这道题的动态规划的几个基本要素
1. 确定状态——到达这个点的方案数
2.划分阶段-根据阶段确定求解顺序
3. 决策选择-动态转移方程f[x][y]=f[x-1][y]+f[x][y-1]
4. 边界条件-起点设置——f[0][0]
5. 求解目标——B点方案数
程序:
#include <bits/stdc++.h>
using namespace std;
unordered_map<long long, unordered_map<long long, long long> > f;
struct D
{
long long x;
long long y;
};
D b, m;
int main()
{
cin >> b.x >> b.y >> m.x >> m.y;
f[0][0]=1;
f[m.x][m.y] = -1;f[m.x + 2][m.y + 1] = -1;f[m.x + 1][m.y + 2] = -1;f[m.x - 1][m.y + 2] = -1;f[m.x - 2][m.y + 1] = -1;f[m.x - 2][m.y - 1] = -1;f[m.x - 1][m.y - 2] = -1;f[m.x + 1][m.y - 2] = -1;f[m.x + 2][m.y - 1] = -1;
// for (long long i = 0; i <= b.x; i++)
// {
// for (long long j = 0; j <= b.y; j++)
// {
// cout<<f[i][j]<<" ";
// }
// cout<<endl;
// }
for (long long i = 0; i <= b.x; i++)
{
for (long long j = 0; j <= b.y; j++)
{
if (f[i][j] == -1)
{
f[i][j] = 0;
}
else if (i == 0 && j == 0)
{
f[i][j] = 1;
}
else
{
if(i-1>=0){
if(j-1>=0)f[i][j] = f[i - 1][j] + f[i][j - 1];
else f[i][j] = f[i - 1][j];
}else f[i][j] =f[i][j - 1];
}
}
}
// cout<<endl;
// for (long long i = 0; i <= b.x; i++)
// {
// for (long long j = 0; j <= b.y; j++)
// {
// cout<<f[i][j]<<" ";
// }
// cout<<endl;
// }
cout << f[b.x][b.y];
return 0;
}
以下是以前的博客
求助(代码60分改不对了):
#include <bits/stdc++.h>
using namespace std;
unordered_map<long long, unordered_map<long long, long long> > f;
struct D
{
long long x;
long long y;
};
D b, m;
int main()
{
cin >> b.x >> b.y >> m.x >> m.y;
f[m.x][m.y] = -1;f[m.x + 2][m.y + 1] = -1;f[m.x + 1][m.y + 2] = -1;f[m.x - 1][m.y + 2] = -1;f[m.x - 2][m.y + 1] = -1;f[m.x - 2][m.y - 1] = -1;f[m.x - 1][m.y - 2] = -1;f[m.x + 1][m.y - 2] = -1;f[m.x + 2][m.y - 1] = -1;
for (long long i = 0; i <= b.x; i++)
{
for (long long j = 0; j <= b.y; j++)
{
if (f[i][j] == -1)
{
f[i][j] = 0;
}
else if (i == 0 || j == 0)
{
f[i][j] = 1;
}
else
{
f[i][j] = f[i - 1][j] + f[i][j - 1];
}
}
}
cout << f[b.x][b.y];
return 0;
}