- 经典并查集
1.用法:将两个集合合并、判断是否属于同一个集合
2.算法描述:
并查集的形态是一棵树 ,p[x]表示x的父结点,根节点的父结点是自己,每棵树的代表元素是这棵树的根节点。
合并集合:令一棵树的根节点的父亲为另一棵树的根节点
判断是否属于同一个集合:判断元素所在集合的代表元素是否相同
3.优化:
路径压缩:每次查找后,将该结点以及祖宗结点都直接指向根节点,优化后再次使用find函数时间复杂度近似为O(1)
另一种方法是按秩合并,优化后效率提高不显著,不建议使用
4.主要代码:
int p[N]; int find(int x) { if(p[x]!=x) p[x]=find(p[x]); return p[x]; }
- 单链表式并查集
1.用法:从当前位置开始沿x轴正方向,找到可用位置
2.算法描述:
p[x]:单链表中x结点的下一个结点
x所在树的根节点:从x开始向右找,第一个没有被用过的位置
最开始每个数都没用过,都指向自己,find函数用于从当前节点开始找可用位置,用掉某个数x则令p[x]=x+1,这一步类似经典并查集中的合并集合
3.优化:同经典并查集
4.主要代码:
int p[N]; int find(int x) { if(p[x]!=x) p[x]=find(p[x]); return p[x]; } int main() { for(int i=1;i<N;i++) p[i]=i; int n; scanf("%d",&n); for(int i=1;i<=n;i++) { int x; scanf("%d",&x); x=find(x); printf("%d ",x); p[x]=x+1; } }
- 高阶并查集
acwing 2069. 网络分析
小明正在做一个网络实验。
他设置了 nn 台电脑,称为节点,用于收发和存储数据。
初始时,所有节点都是独立的,不存在任何连接。
小明可以通过网线将两个节点连接起来,连接后两个节点就可以互相通信了。
两个节点如果存在网线连接,称为相邻。
小明有时会测试当时的网络,他会在某个节点发送一条信息,信息会发送到每个相邻的节点,之后这些节点又会转发到自己相邻的节点,直到所有直接或间接相邻的节点都收到了信息。
所有发送和接收的节点都会将信息存储下来。
一条信息只存储一次。
给出小明连接和测试的过程,请计算出每个节点存储信息的大小。
输入格式
输入的第一行包含两个整数 n,mn,m,分别表示节点数量和操作数量。
节点从 11 至 nn 编号。
接下来 mm 行,每行三个整数,表示一个操作。
- 如果操作为
1 a b
,表示将节点 aa 和节点 bb 通过网线连接起来。当 a = b 时,表示连接了一个自环,对网络没有实质影响。- 如果操作为
2 p t
,表示在节点 pp 上发送一条大小为 tt 的信息。输出格式
输出一行,包含 nn 个整数,相邻整数之间用一个空格分割,依次表示进行完上述操作后节点 11 至节点 nn 上存储信息的大小。
数据范围
1≤n≤100001≤n≤10000,
1≤m≤1051≤m≤105,
1≤t≤1001≤t≤100输入样例1:
4 8 1 1 2 2 1 10 2 3 5 1 4 1 2 2 2 1 1 2 1 2 4 2 2 1
输出样例1:
13 13 5 3
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=10010;
int n,m;
int p[N],d[N];
int find(int x)
{
if(p[x]!=x&&p[p[x]]!=p[x])
{
int r=find(p[x]);
d[x]+=d[p[x]]; //先加,再改变p[x]
p[x]=r;
return r;
}
return p[x];
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) p[i]=i;
while(m--)
{
int k,a,b;
scanf("%d%d%d",&k,&a,&b);
if(k==2)
{
int t=find(a);
d[t]+=b;
}
else
{
if(find(a)!=find(b))
{
d[find(b)]-=d[find(a)]; //注意先减再并入
p[find(b)]=find(a);//b并入a
}
}
}
for(int i=1;i<=n;i++)
if(i==find(i)) printf("%d ",d[i]);
else printf("%d ",d[i]+d[find(i)]);
puts("");
return 0;
}