图的连通性
在一个无向图里,从任意一个顶点出发到其他顶点都有路径,说明它是连通的
并查集
具体概念请见百度百科并查集
这里简单点说,就是在一开始独立的N个元素的集合中,把有一定关联的元素集合到一起,使得他们有共同的父结点(其实就是同一个根结点),并查集使用完成以后我们看到的会是一个森林(哪怕是只有一颗树的)。对于图的连通性而言,并查集下如果发现只剩下一棵树,那么这个图就是连通的
题目引入
这里我用了一个类似并查集的方法做了一个判断图的连通性的题,链接在这:连通性
当然了,如果你想做这个题,不需要按照题面意思直到输入两个0才结束,只需要判断一个图就可以了
原题如下:
时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 64M,其他语言128M
给定一个无向图和其中的所有边,判断这个图是否所有顶点都是连通的。
输入描述:
每组数据的第一行是两个整数 n 和 m(0<=n<=1000)。n 表示图的顶点数目,m 表示图中边的数目。随后有 m 行数据,每行有两个值 x 和 y(0<x, y <=n),表示顶点 x 和 y 相连,顶点的编号从 1 开始计算。输入不保证这些边是否重复。
输出描述:
对于每组输入数据,如果所有顶点都是连通的,输出"YES",否则输出"NO"。
示例1
输入
4 3
1 2
2 3
3 2
3 2
1 2
2 3
0 0
输出
NO
YES
类似并查集的方法
与百度百科上面介绍的方法稍微有些许差别,我用了一个好理解一点的方法,当然了代价就是时间效率会低一些。大概意思是这样:
步骤 | 做法 |
---|---|
1 | 输入的每个结点的父结点编号与它的编号相同 |
2 | 如果两个结点父结点编号相同,下面两步不用执行 |
3 | 对于两个相连的点,让他们的父结点编号都是第二个点的编号 |
4 | 使前面父结点编号与第一个结点父结点编号相同的父结点编号等于第二步里第二个结点父结点编号 |
嫌上面说的太绕的话,下面就给一个例子:
上面的图有4个顶点和4条边,那么一开始子结点和父结点编号的情况就是:
假设我们输入的两点相连关系依次是:
1 2
2 3
1 4
1 3
第一个输入1 2后,1号顶点和2号顶点的父结点编号都是2
由于没有顶点的父结点编号与1号顶点一开始的父结点编号相同,因此可以看第二个输入了
第二个输入2 3后,2号顶点和3号顶点的父结点编号都是3
但是呢这里的1号顶点父结点编号与2号顶点一开始的父结点编号相同,现在2号结点的父结点编号变成了3号结点的父结点编号,所以把1号结点的父结点编号也搞成3号结点的父结点编号,如图:
第三个输入1 4后,1号顶点父结点编号变成了4号顶点的父结点编号,即4,如图:
但是呢在第二个输入后,2号和3号顶点的父结点编号与1号结点父结点编号相同,所以这里要再把这两个顶点的父结点编号改成与1号结点相同,即4号顶点的父结点编号-4
第四个输入1 3,由于他们父结点编号已经相同,表格中后面两步不用执行了
使用这个方法以后,如果父结点编号与顶点编号相同的只有1个,也就是只存在一棵树,那么这个无向图就是连通的
代码如下:(1)JAVA版:
import java.util.Scanner;
public class Main {
//用并集合方法判断连通图
//用一个关系很弱的森林表示树,不必管左右子节点这些东西
public static int[] root=new int[1001];
static int edge,vertex;
public static void union(int v1,int v2) {
//使得两个相连的点有相同的根节点
int fx=root[v1];
int fy=root[v2];
if(fx!=fy){root[v1]=root[v2];
//使得改变前的节点一起连接过来
for(int i=1;i<=vertex;++i) {
if(root[i]==fx)
root[i]=root[v2];}
}
}
public static void main(String args[]) {
Scanner input=new Scanner(System.in);
boolean loop=true;
while(loop) {
vertex=input.nextInt();
edge=input.nextInt();
if(edge==0&&vertex==0) {
loop=false;continue;
}
//初始化根节点
for(int i=1;i<=vertex;++i)
root[i]=i;
for(int i=1;i<=edge;++i) {
int v1=input.nextInt();
int v2=input.nextInt();
union(v1, v2);
}
//判断连通性
int k=0;
for(int i=1;i<=vertex;++i)
if(root[i]==i)++k;
if(k==1)System.out.println("YES");
else System.out.println("NO");
}
input.close();
}
}
(2)C++版:
#include <iostream>
using namespace std;
//使用并查集,根节点初始化为0
int root[1001] = { 0 };
int vertex, edge;//顶点和边的个数
void bind(int v1, int v2) {
//使得两个相连的点有同一个根节点
int root1 = root[v1];
int root2 = root[v2];
if (root1 == root2)return;
else {
root[v1] = root[v2];
for (int i = 1; i <= vertex; ++i) {
if (root[i] == root1)
root[i] = root[v2];
}
}
}
int main()
{
while (true) {
cin >> vertex >> edge;
if (vertex == 0 && edge == 0)break;
//初始化根节点
for (int i = 1; i <= vertex; ++i)
root[i] = i;
for (int i = 1; i <= edge; ++i) {
int v1, v2;
cin >> v1 >> v2;
bind(v1, v2);
}
//判断连通性
int k = 0;
for (int i = 1; i <= vertex; ++i)
if (root[i] == i)++k;
if (k == 1)cout<<("YES");
else cout<<("NO");
}
return 0;
}
希望能对你的学习有所帮助~