向量代数与空间解析几何1

一.向量及其线性运算
1.向量:客观世界有这样一类量,他们既有大 小,又有方向。
2.自由向量:与起点无关的向量,只考虑向量的大小与方向。
3.如果两个向量的大小相等且方向相同,就说向量a和向量b是相等的。
4. 向量的大小叫做 向量的模,模等于1的向量叫做单位向量,模等于0的向量叫做零向量 ,零向量与任何向量垂直,与任何向量平行。
5. 向量的加减法:三角形法则,平行四边形法则
6. 设a为一向量,与a的模大小相等而方向相反的向量叫做a的负向量,记作-a
7. 向量与数的乘法:结合律,分配律
8. 非零向量除以它的模的结果是一个与原向量同方向的单位向量
9. 定理:设向量a不等于0,则向量b平行于a的充分必要条件是:存在唯一的实数x,使b=xa
10.方向角:非零向量r与三条坐标轴的夹角A,B,C称为向量r的方向角,cosA,cosB,cosC称为向量r的方向余弦,cosAcosA+cosBcosB+cosC*cosC=1
r=(x,y,z),则方向余弦cosA=x/|r|。。。
11.向量的投影具有与坐标相同的性质:
(1)Prja=|a|cosA(其中A为向量a与u轴的夹角)
(2)Prj(a+b)=Prja+Prjb
(3)Prj(xa)=xPrja
在这里插入图片描述

二.数量积、向量积、混合积
1.数量积:a﹡b=|a| |b| cosA(其中A为a与b的夹角)
(两向量的数量积等于其中一个向量的模和另一个向量在这个向 量的方向上的投影的乘积)
2. 由数量积的定义可以推的:
(1)aa=|a|﹡|a|
(2)对于两个非零向量a、b,如果a﹡b=0,那么a、b垂直,反之,如果a、b垂直,那么a﹡b=0;
3.数量积符合交换律,分配律,结合律

4.向量积:c=a×b=|a| |b| sinA(A为两向量之间的夹角)
5.向量积的定义推的:
(1)a×a=0
(2)对于两个非零向量a、b,如果a×b=0,那么a//b;反之,如果a//b,那么a×b=0
6.向量积符合下列运算规律
(1)a×b=-b×a
(2)分配律:(a+b)×c=a×c+b×c
(3)结合律
7.向量积的坐标表示
a=ax i+ay j+az k; b=bx i+by j+bz k
a×b=(aybz-azby)i+(azbx-axbz) j+(axby-aybx)k
用行列式表达:
| i j k|
| ax ay az|= a×b
| bx by bz|

8.混合积
(a×b)﹡c 记作 [ abc ]=|a×b| |c| cosA
在这里插入图片描述

三.平面及其方程
1. 如果一个非零向量垂直于一平面,这向量就叫做该平面的法线向量
2.平面上的任一向量均与该平面上的法线向量垂直

3.设法线向量n=(A,B,C) 平面上的一点M=(x0,y0,z0)
(1)点法式方程:A(x-x0)+B(y-y0)+C(z-z0)=0

(2)一般方程:Ax+By+Cz+D=0
【x,y,z的系数就是该平面的一个法线向量n的做坐标,即n=(A,B,C)】
D=0,方程表示通过一个原点的平面
A=0,法线向量n=(0,B,C)垂直于x轴,方程表示一个平行于x轴的平面
同理B=0,C=0
A=B=0,方程表示一个平行于xOy面的平面,同理B=C=0,A=C=0

(3)截距式方程:x/a+y/b+z/c=0
【a,b,c依此叫做平面在x,y,z轴上的截距】

  1. 两平面之间的夹角
    两平面的法线向量夹角(通常指锐角或直角)称为两平面的夹角
    设两平面的法线向量为n1=(A1,B1,C1),n2=(A2,B2,C2)
    cos=|A1A2+B1B2+C1C2| /(根号(A1A1+B1B1+C1C1))×(根号(A2A2+B2B2+C2C2))

5.点到平面的距离
点P(x0,y0,z0) 平面 Ax+By+Cz+D=0
d=|Ax0+By0+Cz0+D| /(根号下(A﹡A+B﹡B+C﹡C))
在这里插入图片描述
四.空间直线及方程
1.如果一个非零向量平行于已知向量,那么这个向量就叫做这条直线的方向向量

2.直线的表达式:

空间直线的一般方程:{A1 x+B1 y+C1 z+D1=0,A2 x+B2 y+C2 z+D2=0}
【两个平面方程的联立】

直线的对称式方程 / 点向式方程:(x-x0)/m=(y-y0)/n=(z-z0)/p=t
【方向向量s=(m,n,p),点M0=(x0,y0.z0)】

直线的参数方程:x=x0+mt; y=y0+nt; z=z0+pt

3.两直线的夹角
两直线的方向向量的夹角(通常指锐角或直角)叫做两直线的夹角
两直线互相垂直:m1m2+n1n2+p1p2=0
两直线相互平行或重合:m1/m2=n1/n2=p1/p2

4.直线与平面的夹角
当直线与平面不垂直时,直线与它在平面上的投影直线的夹角称为直线与平面的夹角(0~90)
直线方向向量s=(m,n,p) ,平面的法线向量n=(A,B,C)
sin=|Am+Bn+Cp| /(根号(A﹡A+B﹡B+C﹡C))×(根号(m﹡m+n﹡n+p﹡p))

直线与平面垂直:A/m=B/n=C/p
直线与平面平行或重合:Am+Bn+Cp=0

!在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值