目录
一:KNN算法概念
KNN(K-Nearest Neighbor)法即K最邻近法,最初由Cover和Hart于1968年提出,是最简单的机器学习算法之一
算法思路简单直观:分类问题:如果一个样本在特征空间中的K个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,KNN是分类算法
二:KNN原理
如左图所示,根据K近邻,可以得出右图,则判定不确定的(绿小点)大概率为蓝色三角形
举个例子,帮助小明决定是否去看球赛,(特征:天气、价格)
天气 | 价格 | 结果 |
晴天 | 300 | 去 |
雨天 | 250 | 不去 |
晴天 | 500 | 不去 |
雨天 | 100 | 去 |
阴天 | 250 | 去 |
也可以使用K近邻,决定是否去看球赛,如下图所示
由K近邻,大概率分析结果为,去看球赛
KNN原理 距离计算
欧式距离
二维空间两个点的欧式距离计算公式如下,KNN分类也可根据公式来计算
但是,小明看球赛,除了天气、价格,还会有如是否有朋友陪伴,是否有喜欢的球星等其他的特征数据,因此,公式需要改进,多维空间公式如下
三:KNN超参数
KNN超参数-K
K近邻算法,邻近的点的数的设置,是可以改变的,也会相应地得到不同的结果
如k=3时,小绿点大概率为蓝色小三角;
如k=5时,小绿点大概率为红色小圆点
KNN超参数-weight权重/p明可夫斯基距离
KNN 多类别分类
四:KNN算法选择
优点:
1.数据没有假设,准确度高,对异常点不敏感
2.理论成熟,思想简单
缺点:
1.当样本数据偏移的时候会导致分类失败
2.计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点
如下,博主测试了鸢尾花分类模型预测[超参调优示例]