初衷是认为现在有比较多的网络实现了对深度的预测,但是呢没有文章来说明网络预测深度成功到底是因为什么,是因为图像上的物体尺寸还是纹理色彩等原因,然后这篇文章就是给出几个特征点,然后验证到底是哪个特征决定了深度预测成功。
文章里面给了下面几种特征,由于翻译麻烦,这里截图引用的是该篇博客:
论文阅读:How Do Neural Networks See Depth in Single Images?-CSDN博客
然后呢,文章认为基于KITTI这个室外数据集,在图像中物体的位置和物体的尺寸(也就是上面截图中写的目标的面积)对网络的预测效果影响较大
然后基于图像中物体的位置和物体的尺寸,怎么来计算深度呢,大家都知道深度就是物体距离摄像机的距离大小,看下面这张图
图1
Z是物体距离相机的水平距离大小,也就是深度大小,