论文阅读 How Do Neural Networks See Depth in Single Images?

初衷是认为现在有比较多的网络实现了对深度的预测,但是呢没有文章来说明网络预测深度成功到底是因为什么,是因为图像上的物体尺寸还是纹理色彩等原因,然后这篇文章就是给出几个特征点,然后验证到底是哪个特征决定了深度预测成功。

文章里面给了下面几种特征,由于翻译麻烦,这里截图引用的是该篇博客:

论文阅读:How Do Neural Networks See Depth in Single Images?-CSDN博客

然后呢,文章认为基于KITTI这个室外数据集,在图像中物体的位置和物体的尺寸(也就是上面截图中写的目标的面积)对网络的预测效果影响较大

然后基于图像中物体的位置和物体的尺寸,怎么来计算深度呢,大家都知道深度就是物体距离摄像机的距离大小,看下面这张图

图1

Z是物体距离相机的水平距离大小,也就是深度大小,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值