LeetCode 1524. 和为奇数的子数组数目

1524. 和为奇数的子数组数目

给你一个整数数组 arr 。请你返回和为 奇数 的子数组数目。

由于答案可能会很大,请你将结果对 10^9 + 7 取余后返回。

示例 1:

输入:arr = [1,3,5]
输出:4
解释:所有的子数组为 [[1],[1,3],[1,3,5],[3],[3,5],[5]] 。
所有子数组的和为 [1,4,9,3,8,5].
奇数和包括 [1,9,3,5] ,所以答案为 4 。

示例 2 :

输入:arr = [2,4,6]
输出:0
解释:所有子数组为 [[2],[2,4],[2,4,6],[4],[4,6],[6]] 。
所有子数组和为 [2,6,12,4,10,6] 。
所有子数组和都是偶数,所以答案为 0 。

示例 3:

输入:arr = [1,2,3,4,5,6,7]
输出:16

示例 4:

输入:arr = [100,100,99,99]
输出:4

示例 5:

输入:arr = [7]
输出:1

提示:

  • 1 <= arr.length <= 10^5
  • 1 <= arr[i] <= 100

提示 1

Can we use the accumulative sum to keep track of all the odd-sum sub-arrays ?


提示 2

if the current accu sum is odd, we care only about previous even accu sums and vice versa.

 

解法:前缀和

偶数 + 偶数 = 偶数,奇数 + 奇数 = 偶数,只有 奇数 + 偶数 = 奇数。

这道题要求返回和为奇数的子数组数目。为了快速计算任意子数组的和,可以通过维护前缀和的方式。这道题只需要知道每个子数组的和的奇偶性,不需要知道子数组的和的具体值,因此不需要维护每一个前缀和,只需要维护奇数前缀和的数量与偶数前缀和的数量。

分别使用 odd 和 even 表示奇数前缀和的数量与偶数前缀和的数量。初始时,odd=0,even=1,因为空的前缀的和是 0,也是偶数前缀和。

遍历数组 arr 并计算前缀和。对于下标 i 的位置的前缀和(即 arr[0]+arr[1]+…+arr[i]),根据奇偶性进行如下操作:

  • 当下标 i 的位置的前缀和是偶数时,如果下标 j 满足 j<i 且下标 j 的位置的前缀和是奇数,则从下标 j+1 到下标 i 的子数组的和是奇数,因此,以下标 i 结尾的子数组中,和为奇数的子数组的数量即为奇数前缀和的数量 odd;
  • 当下标 i 的位置的前缀和是奇数时,如果下标 j 满足 j<i 且下标 j 的位置的前缀和是偶数,则从下标 j+1 到下标 i 的子数组的和是奇数,因此,以下标 i 结尾的子数组中,和为奇数的子数组的数量即为偶数前缀和的数量 even。

上述下标 j 的最小可能取值为 −1,当 j=−1 时表示下标 j 的位置的前缀为空。

在更新和为奇数的子数组数量之后,需要根据下标 i 的位置的前缀和的奇偶性更新 odd 或 even 的值。如果前缀和是奇数,则 odd 的值加 1;如果前缀和是偶数,则 even 的值加 1。

Java版:

class Solution {
    public int numOfSubarrays(int[] arr) {
        final int MOD = 1000000007;
        int presum = 0;
        int odd = 0;
        int even = 1;
        int ans = 0;
        for (int a: arr) {
            presum += a;
            if (presum % 2 == 0) {
                ans = (ans + odd) % MOD;
                even++;
            } else {
                ans = (ans + even) % MOD;
                odd++;
            }
        }
        return ans;
    }
}

Python3版:

class Solution:
    def numOfSubarrays(self, arr: List[int]) -> int:
        MOD = 10**9 + 7
        ans = 0
        odd = 0
        even = 1
        presum = 0
        for a in arr:
            presum += a
            if presum % 2 == 0:
                ans += odd
                even += 1
            else:
                ans += even 
                odd += 1
        return ans % MOD

复杂度分析

  • 时间复杂度:O(n),其中 n 是数组 arr 的长度。遍历数组一次,对于数组中的每个元素,更新前缀和、和为奇数的子数组数目以及 odd 和 even 的值的时间复杂度都是 O(1),因此总时间复杂度是 O(n)。
  • 空间复杂度:O(1),只需要维护常量的额外空间。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值