给你一个整数数组 arr
。请你返回和为 奇数 的子数组数目。
由于答案可能会很大,请你将结果对 10^9 + 7
取余后返回。
示例 1:
输入:arr = [1,3,5] 输出:4 解释:所有的子数组为 [[1],[1,3],[1,3,5],[3],[3,5],[5]] 。 所有子数组的和为 [1,4,9,3,8,5]. 奇数和包括 [1,9,3,5] ,所以答案为 4 。
示例 2 :
输入:arr = [2,4,6] 输出:0 解释:所有子数组为 [[2],[2,4],[2,4,6],[4],[4,6],[6]] 。 所有子数组和为 [2,6,12,4,10,6] 。 所有子数组和都是偶数,所以答案为 0 。
示例 3:
输入:arr = [1,2,3,4,5,6,7] 输出:16
示例 4:
输入:arr = [100,100,99,99] 输出:4
示例 5:
输入:arr = [7] 输出:1
提示:
1 <= arr.length <= 10^5
1 <= arr[i] <= 100
提示 1
Can we use the accumulative sum to keep track of all the odd-sum sub-arrays ?
提示 2
if the current accu sum is odd, we care only about previous even accu sums and vice versa.
解法:前缀和
偶数 + 偶数 = 偶数,奇数 + 奇数 = 偶数,只有 奇数 + 偶数 = 奇数。
这道题要求返回和为奇数的子数组数目。为了快速计算任意子数组的和,可以通过维护前缀和的方式。这道题只需要知道每个子数组的和的奇偶性,不需要知道子数组的和的具体值,因此不需要维护每一个前缀和,只需要维护奇数前缀和的数量与偶数前缀和的数量。
分别使用 odd 和 even 表示奇数前缀和的数量与偶数前缀和的数量。初始时,odd=0,even=1,因为空的前缀的和是 0,也是偶数前缀和。
遍历数组 arr 并计算前缀和。对于下标 i 的位置的前缀和(即 arr[0]+arr[1]+…+arr[i]),根据奇偶性进行如下操作:
- 当下标 i 的位置的前缀和是偶数时,如果下标 j 满足 j<i 且下标 j 的位置的前缀和是奇数,则从下标 j+1 到下标 i 的子数组的和是奇数,因此,以下标 i 结尾的子数组中,和为奇数的子数组的数量即为奇数前缀和的数量 odd;
- 当下标 i 的位置的前缀和是奇数时,如果下标 j 满足 j<i 且下标 j 的位置的前缀和是偶数,则从下标 j+1 到下标 i 的子数组的和是奇数,因此,以下标 i 结尾的子数组中,和为奇数的子数组的数量即为偶数前缀和的数量 even。
上述下标 j 的最小可能取值为 −1,当 j=−1 时表示下标 j 的位置的前缀为空。
在更新和为奇数的子数组数量之后,需要根据下标 i 的位置的前缀和的奇偶性更新 odd 或 even 的值。如果前缀和是奇数,则 odd 的值加 1;如果前缀和是偶数,则 even 的值加 1。
Java版:
class Solution {
public int numOfSubarrays(int[] arr) {
final int MOD = 1000000007;
int presum = 0;
int odd = 0;
int even = 1;
int ans = 0;
for (int a: arr) {
presum += a;
if (presum % 2 == 0) {
ans = (ans + odd) % MOD;
even++;
} else {
ans = (ans + even) % MOD;
odd++;
}
}
return ans;
}
}
Python3版:
class Solution:
def numOfSubarrays(self, arr: List[int]) -> int:
MOD = 10**9 + 7
ans = 0
odd = 0
even = 1
presum = 0
for a in arr:
presum += a
if presum % 2 == 0:
ans += odd
even += 1
else:
ans += even
odd += 1
return ans % MOD
复杂度分析
- 时间复杂度:O(n),其中 n 是数组 arr 的长度。遍历数组一次,对于数组中的每个元素,更新前缀和、和为奇数的子数组数目以及 odd 和 even 的值的时间复杂度都是 O(1),因此总时间复杂度是 O(n)。
- 空间复杂度:O(1),只需要维护常量的额外空间。