24考研数据结构-哈夫曼树与哈夫曼编码

5.5树与二叉树的应用

5.5.1 哈夫曼树和哈夫曼编码

1. 带权路径长度的定义

权值大于零
在这里插入图片描述

2. 哈夫曼树的定义(最优二叉树,不唯一)

在这里插入图片描述

3. 哈夫曼树的构造

每次都选取权值最小的结点构成一棵树,并且新的树的根节点的权值为两个子结点的权值之和,重复这个步骤就能构成哈夫曼树
在这里插入图片描述

4. 哈夫曼树的特点

叶子结点n,度为二的结点n-1
在这里插入图片描述

5.哈夫曼编码(最短二进制前缀编码)
  • 固定长度编码
    在这里插入图片描述
  • 可变长度编码(无歧义)

在这里插入图片描述

数据结构:带权路径长度(Weighted Path Length)

在计算机科学中,带权路径长度(Weighted Path Length,简称WPL)是一种用于度量二叉树的平衡性的指标。它是通过将每个节点的深度与节点上的权值相乘,并将所有节点的权值之和作为二叉树的WPL。WPL在树的构建和优化中起着重要的作用,特别是在哈夫曼树和赫夫曼编码中有广泛应用。

1. 什么是带权路径长度

在二叉树中,每个节点都有一个权值,而节点的深度指的是从根节点到该节点的路径的长度(边的数量)。带权路径长度是将每个节点的深度与节点上的权值相乘,并将所有节点的权值之和作为二叉树的WPL。简而言之,WPL是树中所有路径长度与对应节点权值乘积的总和。

2. 计算带权路径长度

计算带权路径长度是一个简单而重要的过程。对于一个给定的二叉树,我们可以通过先序遍历或后序遍历的方式遍历树的每个节点,并计算每个节点的权值和深度的乘积,然后将所有节点的乘积相加即可得到WPL。

3. 应用:哈夫曼树和赫夫曼编码

带权路径长度在哈夫曼树和赫夫曼编码中有广泛的应用。哈夫曼树是一种特殊的最优二叉树,它的带权路径长度最小。在哈夫曼树中,权值较大的节点会位于树的较低层,而权值较小的节点会位于树的较高层,从而使得整个树的带权路径长度最小。赫夫曼编码是一种对字符进行编码的方法,它利用了哈夫曼树的特性,将出现频率较高的字符用较短的编码表示,而出现频率较低的字符用较长的编码表示,从而达到节省编码空间的目的。

4. 总结

带权路径长度是一种用于度量二叉树平衡性的重要指标,在计算机科学中有广泛的应用。通过将每个节点的深度与节点上的权值相乘,并将所有节点的权值之和作为二叉树的WPL,我们可以有效地评估树的结构是否平衡。特别是在哈夫曼树和赫夫曼编码中,带权路径长度的概念发挥了关键作用,帮助我们构建最优二叉树和高效的编码方案。

通过对带权路径长度的深入理解,我们可以更好地理解二叉树的结构和优化算法,并在解决实际问题中灵活运用。在学习数据结构和算法时,带权路径长度是一个重要的概念,值得我们深入学习和探索。

数据结构之哈夫曼树与哈夫曼编码

在计算机科学中,哈夫曼树(Huffman Tree)与哈夫曼编码(Huffman Coding)是数据压缩领域中常用的算法。它们能够将出现频率较高的字符用较短的编码表示,从而实现数据的高效压缩与解压缩。本文将详细介绍哈夫曼树与哈夫曼编码的原理与应用。

哈夫曼树

1. 基本概念

哈夫曼树是一种特殊的二叉树,它通过构建具有最小带权路径长度的二叉树来实现数据压缩。在哈夫曼树中,频率较高的字符将被赋予较短的编码,频率较低的字符将被赋予较长的编码。这样,编码后的数据可以达到最优的压缩效果。

2. 构建方法

构建哈夫曼树的基本方法是:首先将待编码的字符按照出现频率从小到大排列,然后不断合并出现频率最小的两个节点,直到所有节点都合并为一个根节点,形成哈夫曼树。在合并节点的过程中,将左子树的编码设为’0’,右子树的编码设为’1’,最终得到每个字符的哈夫曼编码。

3. 举例说明

假设有一个字符串"ABCDABCA",其中字符A出现了3次,字符B出现了2次,字符C出现了2次,字符D出现了1次。我们可以使用哈夫曼树对该字符串进行编码:

  • 将字符按照频率从小到大排列:D(1) < B(2) = C(2) < A(3)。
  • 不断合并出现频率最小的两个节点,得到以下哈夫曼树:
       8
      / \
     3   5
    / \ / \
   D   A   B+C
  • 对树中的左子树赋予’0’编码,右子树赋予’1’编码,得到字符的哈夫曼编码:
A: 1
B: 01
C: 00
D: 001

哈夫曼编码

1. 基本概念

哈夫曼编码是根据哈夫曼树得到的每个字符的编码。编码的长度与字符在哈夫曼树中的层数相关,出现频率较高的字符编码较短,出现频率较低的字符编码较长。通过对字符串进行哈夫曼编码,可以将原始数据进行高效压缩,从而减少数据的存储空间。

2. 编码方法

根据哈夫曼树的构建方法,每个字符的编码由根节点到对应字符的路径上的’0’和’1’组成。从根节点开始,沿着树的路径找到目标字符的叶子节点,记录所经过的’0’和’1’,即为该字符的哈夫曼编码。

3. 举例说明

以前面构建的哈夫曼树为例,得到的哈夫曼编码为:

  • A: 1
  • B: 01
  • C: 00
  • D: 001

将字符串"ABCDABCA"进行编码,得到的哈夫曼编码为:“10101000101000100”,经过哈夫曼编码后,原始字符串被压缩为较短的二进制编码,实现了数据的高效压缩。

应用与总结

哈夫曼树与哈夫曼编码在数据压缩与解压缩中有着广泛的应用。它们能够将出现频率较高的字符用较短的编码表示,从而实现对数据的高效压缩与解压缩。哈夫曼树和哈夫曼编码是一种简单而高效的数据压缩算法,在计算机科学和通信领域得到了广泛的应用。通过深入了解和掌握哈夫曼树与哈夫曼编码的原理与应用,我们可以更好地理解数据压缩的技术,提高数据处理的效率,为计算机科学和通信领域的发展做出贡献。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

VengaZ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值