在文章末尾可以获取联系方式
Python****山东济南二手房源爬虫数据 可视化分析大屏全屏系统 开题报告 |
X X X X 大学**/学校/**学院
毕业论文(设计)开题报告书
学生姓名 | 所属 学院 | 学号 | |||
专业班级 | |||||
论文(设计)题目 | Python山东济南二手房源爬虫数据可视化分析大屏全屏系统设计与实现 | ||||
指导教师姓名(职称) | 开题日期 | ||||
选题依据:1.研究背景与意义;2.国内外研究(应用与发展)现状。 1**:研究背景与意义** Python山东济南二手房源爬虫数据可视化分析大屏全屏系统的研究背景与意义如下: 研究背景: 山东济南作为中国的重要城市之一,其房地产市场一直备受关注。随着互联网的普及和发展,越来越多的房源信息被发布在线上平台上,这为我们获取和分析房源数据提供了便利。然而,手动收集和整理这些数据既耗时又易出错。因此,利用Python的爬虫技术自动抓取和分析山东济南的二手房源数据,并结合数据可视化工具进行展示,成为了一个值得研究的问题。 意义: 提供全面的市场视图:通过爬虫技术,我们可以系统地收集和整理山东济南的二手房源数据。结合数据可视化分析,可以为投资者、购房者、房地产中介等提供全面的市场视图,帮助他们更好地了解市场动态和趋势。 辅助决策制定:对于投资者和购房者而言,了解市场的供需情况、价格走势等关键信息至关重要。通过大屏全屏系统的实时数据展示,他们可以快速获得所需的信息,从而做出更明智的决策。 推动市场透明化:通过公开的数据展示和分析,可以增加市场的透明度,减少信息不对称的情况。这有助于建立一个更加公平和公正的房地产市场环境。 促 进技术创新和应用:该研究将推动Python爬虫技术、数据可视化技术、大数据分析等在房地产领域的应用和创新。这不仅有助于提高房地产市场的效率,还可以为相关技术的研究和发展提供有价值的案例和实践经验。 总的来说,Python山东济南二手房源爬虫数据可视化分析大屏全屏系统的研究将有助于提升房地产市场的信息化水平,增强市场的透明度和公平性,同时为相关领域的技术创新和应用提供推动力。 2**:国内外研究现状** Python山东济南二手房源爬虫数据可视化分析大屏全屏系统的国内外研究现状如下: 国内研究现状: 国内在Python爬虫与数据可视化技术应用于房地产领域的研究日渐增多。在山东济南,当地的学者和企业也逐渐开始关注这一研究领域。目前,一些初步的研究工作主要集中在利用Python爬虫技术从各大房产网站抓取房源信息,并进行简单的数据清洗和处理。对于数据可视化方面,多数研究仍然停留在静态图表和报表的生成,缺乏交互性和实时性。然而,随着技术的不断进步和应用需求的提升,国内在Python山东济南二手房源爬虫数据可视化分析大屏全屏系统的研究会逐渐深入。 国外研究现状: 相比之下,国外在Python爬虫技术和数据可视化分析方面的研究起步较早,也更加成熟。他们不仅关注数据的获取和清洗,更注重高级的数据分析、挖掘和预测。在房地产领域,国外的研究团队和企业已经成功开发出一些综合性的数据可视化分析系统,用于实时监测市场动态、预测市场趋势等。这些系统通常采用先进的数据可视化技术,以大屏全屏的方式进行展示,提供丰富的交互功能和个性化定制选项。此外,他们还积极探索将机器学习、深度学习等人工智能技术应用于房源数据分析和可视化中,提高分析的准确性和效率。 综上所述,虽然国内在Python山东济南二手房源爬虫数据可视化分析大屏全屏系统的研究尚处于起步阶段,但随着技术的不断发展和应用需求的增加,这一领域的研究和应用将会蓬勃发展。同时,借鉴国外的先进经验和技术成果,有助于加速国内在该领域的研究进程,推动相关技术的创新和应用。 3:研究思路与方法** **3.1研究思路** 通过图书馆借阅开发相关书籍或者网络上寻找相关课题视频,查询网络以及向导师寻求帮助等方法解决技术上的问题。 具体步骤为: (1)对系统进行需求分析,明确管理员功能,前端开发功能,开发框架模式等; (2)对系统进行概要设计,搭建开发换进,建立系统的架构图、功能模块图等; (3)对系统管理后台,设计出所有功能模块; (4)对用户前端,设计出所有功能模块; (5)进行软件编码,实现系统各项功能; (6)对系统进行各种测试; (7)提交系统,撰写论文。 选定了项目开发模式、后台的开发框架,搭建好开发环境和安装好对应的开发工具;接下来就设计数据库,开发后台和接口,开发完整的项目后台和前端,完成最终的作品、测试、使用。 3.2研究方法 为了更好完善系统使用了以下研究方法: (1)文献阅读法 通过各个文献查找网站、学校图书馆以及百度百科查询和借鉴课题相关的论文资料,然后将适合的资料保存到本地,开发的时候使用。 (2)比较法:通过对国内外有关课题系统的功能、相关技术、内容等方面进行比较分析,从而提出系统所存在的问题,并提出相应的解决措施 (3)模拟法 模拟法是先依照原型的主要特征,创设一个相似的模型,然后通过模型来间接研究原型的一种形容方法。我们通过将本地电脑模拟为服务器进行本地操作,达到开发的最终效果。 **3.3可行性** 1.技术可行性 以Windows7或10为操作系统,基于python3.8版本,采用PyCharm软件为开发工具,运用mysql进行数据库存储;后台管理系统硬件环境是PC机,用户使用任何能上网的电脑设置,使用浏览器即可访问新闻管理系统。 2.经济可行性 一方面,只要有能上网的电脑,系统的管理员在任何地方任何时候都可以管理,工作效率进一步提高从而节省人力、物力,只要会打字即可,不需要很高的学历;另一方面,系统的制作成本低,在现有的PC机上即可使用PyCharm开发者工具进行开发。 3.操作可行性 从管理来说,只要有一台普通的电脑就可以进行网站信息的设置、录入、修改,操作非常方便而且可行度很高。 4.数据来源可行性 来源知名房产网站数据,数据已经很普及了,使用也很广,有代表性 4:系统初步设计方案** 4.1****主要设计技术 开发环境:python3.8+ 开发语言:Python 开发框架:Django框架 数据采集:requests + parsel + Xpath 可视化模块:Echarts 开发工具:Pycharm 数据库:mysql8 数据库管理工具:navicat 其他开发语言:html + css +javascript 4.2****研究内容 我们这里以我们打算实现的系统内容,分析如下,数据来源淘宝 **大屏全屏可视化展示:**1. 二手房基础数据:房源总数多少套,小区总数多少个,房源平均面积,房源平均价格 |
- 各个区域二手房均价销售数据(柱形图)
- 各个区域房源平均面积(折线图)
- 创新点,在区域地区,按各个区域显示房源数目
- 各个区域的小区数量和房源数量,双柱形图显示
- 各个面积户型占比分析:89方以下,90到149方,150-199方,200方以上
- 最新房源数据,滚动显示最新10个房源信息
**后台内容:**1. 管理员登录、密码修改、退出系统
2. 展示所有房源数据,可以链接到原始地址
3. 区域数据列表:显示各区的销售数据,包含房源数,平均面积,平均价格等
4. 小区数据列表:显示各个小区所在区域,小区的房源数,小区房源的平均价格和面积等
一、Python所有方向的学习路线
Python所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。
二、Python必备开发工具
工具都帮大家整理好了,安装就可直接上手!
三、最新Python学习笔记
当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
四、Python视频合集
观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
五、实战案例
纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
六、面试宝典
简历模板
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!