一、内容复习
1.1 数值积分概论
1.1.1 数值积分的基本思想
1.1.2 代数精度的概念
1.定义
注意:梯形公式的代数精度为1,中矩形公式的代数精度为1。
2.重点例题
定理一:形如(1.3)式的求积公式至少有 n 次代数精度的充分必要条件是,它是插值型的。
1.1.3 求积公式的余项
梯形公式
∫
a
b
f
(
x
)
d
x
≈
b
−
a
2
[
f
(
a
)
+
f
(
b
)
]
\int_a^b f(x)dx \approx \frac{b-a}{2}[f(a)+f(b)]
∫abf(x)dx≈2b−a[f(a)+f(b)]
梯形公式的余项
R
[
f
]
=
−
(
b
−
a
)
3
12
f
′
′
(
η
)
,
η
∈
(
a
,
b
)
R[f]=-\frac{(b-a)^3}{12}f''(\eta), \eta \in (a,b)
R[f]=−12(b−a)3f′′(η),η∈(a,b)
矩形公式
∫
a
b
f
(
x
)
d
x
≈
(
b
−
a
)
f
(
a
+
b
2
)
\int_a^b f(x)dx \approx (b-a)f(\frac{a+b}{2})
∫abf(x)dx≈(b−a)f(2a+b)
矩形公式的余项
R
[
f
]
=
(
b
−
a
)
3
24
f
′
′
(
η
)
,
η
∈
(
a
,
b
)
R[f]=\frac{(b-a)^3}{24}f''(\eta), \eta \in (a,b)
R[f]=24(b−a)3f′′(η),η∈(a,b)
1.2 牛顿-柯特斯公式
性质一:柯特斯系数求和为一
性质二:柯特斯系数出现负数,则舍入误差较大
n=1 => 梯形公式 => 代数精度为1
n=2 => 辛普森公式 => 代数精度为3
n=4 => 柯特斯公式 => 代数精度为5(只考代数精度等)
辛普森公式
S
=
b
−
a
6
[
f
(
a
)
+
4
f
(
a
+
b
2
)
+
f
(
b
)
]
S=\frac{b-a}{6}[f(a)+4f(\frac{a+b}{2})+f(b)]
S=6b−a[f(a)+4f(2a+b)+f(b)]
辛普森公式的余项
R
[
f
]
=
−
b
−
a
180
(
b
−
a
2
)
4
f
(
4
)
(
η
)
,
η
∈
(
a
,
b
)
R[f]=-\frac{b-a}{180}(\frac{b-a}{2})^4 f^{(4)}(\eta), \eta \in (a,b)
R[f]=−180b−a(2b−a)4f(4)(η),η∈(a,b)
柯特斯公式
C
=
b
−
a
90
[
7
f
(
x
0
)
+
32
f
(
x
1
)
+
12
f
(
x
2
)
+
32
f
(
x
3
)
+
7
f
(
x
4
)
]
C=\frac{b-a}{90}[7f(x_0)+32f(x_1)+12f(x_2)+32f(x_3)+7f(x_4)]
C=90b−a[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]
柯特斯公式的余项
R
[
f
]
=
−
2
(
b
−
a
)
945
(
b
−
a
4
)
6
f
(
6
)
(
η
)
,
η
∈
(
a
,
b
)
R[f]=-\frac{2(b-a)}{945}(\frac{b-a}{4})^6 f^{(6)}(\eta), \eta \in (a,b)
R[f]=−9452(b−a)(4b−a)6f(6)(η),η∈(a,b)
注意:当 n≥8 时,柯特斯系数出现负值,这样计算不稳定,故 n≥8 时的牛顿-柯特斯公式是不用的。
定理:当阶 n 为偶数时,牛顿-柯特斯公式至少有 n+1 次代数精度。(曾经考过)
1.3 复合求积公式
前言
1.3.1 复合梯形公式
复合梯形公式是收敛的、稳定的。
1.3.2 复合辛普森求积公式
复合辛普森公式是收敛的、稳定的。
1.3.3 经典例题
例题一
例题二
1.4 龙贝格求积公式
1.4.1 梯形法的递推化
1.4.2 龙贝格算法(理解)
1.计算过程
2.经典例题
1.5 高斯求积公式
1.5.1 高斯型求积公式(不等距节点公式)
1.5.2 高斯-勒让德求积公式
定义
注意:只能求解[-1, 1]区间的定积分
一点高斯-勒让德公式(中矩形公式)
∫
−
1
1
f
(
x
)
d
x
≈
2
f
(
0
)
\int_{-1}^1 f(x)dx \approx 2 f(0)
∫−11f(x)dx≈2f(0)
两点高斯-勒让德公式
∫
−
1
1
f
(
x
)
d
x
≈
f
(
−
1
3
)
+
f
(
1
3
)
\int_{-1}^1 f(x)dx \approx f(-\frac{1}{\sqrt{3}})+f(\frac{1}{\sqrt{3}})
∫−11f(x)dx≈f(−31)+f(31)
区间变换
二、习题复习
2.1 大题
重点习题:1、2、3、4、6、7