数值分析第四章

一、内容复习

1.1 数值积分概论

1.1.1 数值积分的基本思想

机械求积

1.1.2 代数精度的概念

1.定义
代数精度

注意:梯形公式的代数精度为1,中矩形公式的代数精度为1。

2.重点例题
重点例题

定理一:形如(1.3)式的求积公式至少有 n 次代数精度的充分必要条件是,它是插值型的。

1.1.3 求积公式的余项

梯形公式
∫ a b f ( x ) d x ≈ b − a 2 [ f ( a ) + f ( b ) ] \int_a^b f(x)dx \approx \frac{b-a}{2}[f(a)+f(b)] abf(x)dx2ba[f(a)+f(b)]
梯形公式的余项
R [ f ] = − ( b − a ) 3 12 f ′ ′ ( η ) , η ∈ ( a , b ) R[f]=-\frac{(b-a)^3}{12}f''(\eta), \eta \in (a,b) R[f]=12(ba)3f′′(η),η(a,b)
矩形公式
∫ a b f ( x ) d x ≈ ( b − a ) f ( a + b 2 ) \int_a^b f(x)dx \approx (b-a)f(\frac{a+b}{2}) abf(x)dx(ba)f(2a+b)
矩形公式的余项
R [ f ] = ( b − a ) 3 24 f ′ ′ ( η ) , η ∈ ( a , b ) R[f]=\frac{(b-a)^3}{24}f''(\eta), \eta \in (a,b) R[f]=24(ba)3f′′(η),η(a,b)

1.2 牛顿-柯特斯公式

牛顿-柯特斯公式

性质一:柯特斯系数求和为一
性质二:柯特斯系数出现负数,则舍入误差较大
n=1 => 梯形公式 => 代数精度为1
n=2 => 辛普森公式 => 代数精度为3
n=4 => 柯特斯公式 => 代数精度为5(只考代数精度等)

辛普森公式
S = b − a 6 [ f ( a ) + 4 f ( a + b 2 ) + f ( b ) ] S=\frac{b-a}{6}[f(a)+4f(\frac{a+b}{2})+f(b)] S=6ba[f(a)+4f(2a+b)+f(b)]
辛普森公式的余项
R [ f ] = − b − a 180 ( b − a 2 ) 4 f ( 4 ) ( η ) , η ∈ ( a , b ) R[f]=-\frac{b-a}{180}(\frac{b-a}{2})^4 f^{(4)}(\eta), \eta \in (a,b) R[f]=180ba(2ba)4f(4)(η),η(a,b)
柯特斯公式
C = b − a 90 [ 7 f ( x 0 ) + 32 f ( x 1 ) + 12 f ( x 2 ) + 32 f ( x 3 ) + 7 f ( x 4 ) ] C=\frac{b-a}{90}[7f(x_0)+32f(x_1)+12f(x_2)+32f(x_3)+7f(x_4)] C=90ba[7f(x0)+32f(x1)+12f(x2)+32f(x3)+7f(x4)]
柯特斯公式的余项
R [ f ] = − 2 ( b − a ) 945 ( b − a 4 ) 6 f ( 6 ) ( η ) , η ∈ ( a , b ) R[f]=-\frac{2(b-a)}{945}(\frac{b-a}{4})^6 f^{(6)}(\eta), \eta \in (a,b) R[f]=9452(ba)(4ba)6f(6)(η),η(a,b)
柯特斯系数

注意:当 n≥8 时,柯特斯系数出现负值,这样计算不稳定,故 n≥8 时的牛顿-柯特斯公式是不用的。
定理:当阶 n 为偶数时,牛顿-柯特斯公式至少有 n+1 次代数精度。(曾经考过)

1.3 复合求积公式

前言

复合求积法

1.3.1 复合梯形公式

复合梯形公式
复合梯形公式的余项

复合梯形公式是收敛的、稳定的。

1.3.2 复合辛普森求积公式

复合辛普森求积公式

复合辛普森公式是收敛的、稳定的。

1.3.3 经典例题

例题一
例题一
例题二
例题二
例题二

1.4 龙贝格求积公式

1.4.1 梯形法的递推化

梯形法的递推化
梯形法的递推化

1.4.2 龙贝格算法(理解)

1.计算过程
龙贝格算法
2.经典例题
经典例题

1.5 高斯求积公式

1.5.1 高斯型求积公式(不等距节点公式)

高斯求积公式

1.5.2 高斯-勒让德求积公式

定义
高斯-勒让德求积公式

注意:只能求解[-1, 1]区间的定积分

一点高斯-勒让德公式(中矩形公式)
∫ − 1 1 f ( x ) d x ≈ 2 f ( 0 ) \int_{-1}^1 f(x)dx \approx 2 f(0) 11f(x)dx2f(0)
两点高斯-勒让德公式
∫ − 1 1 f ( x ) d x ≈ f ( − 1 3 ) + f ( 1 3 ) \int_{-1}^1 f(x)dx \approx f(-\frac{1}{\sqrt{3}})+f(\frac{1}{\sqrt{3}}) 11f(x)dxf(3 1)+f(3 1)
区间变换
区间变换

二、习题复习

2.1 大题

重点习题:1、2、3、4、6、7

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值