从OSM数据中提取 道路经纬度

1.在OpenStreetMap官网中获取规定区域的osm数据

点击导出,根据需要选择。

 2.打开QGIS,手动拖入osm数据,添加lines图层

裁剪:(261条消息) 利用arcmap将shape文件裁剪_wraettearw的博客-CSDN博客_arcgis裁剪shp文件

 3.导出

4. ArcGIS布点

(1)在ARCMAP中导入路网要素shp文件,将其投影成UTM坐标。系统工具箱----data management tools----投影和变换-------投影。双击打开投影后,在输入要素类选择shp文件,输出坐标系选择投影坐标系----UTM----WGS1984----northern hemisphere----WGS 1984 UTM zone xxN,根据下图自行选择

(2)将投影后的数据导出成shp文件,添加到新的图层中。

(3)对UTM坐标下的路网数据进行采样操作。系统工具箱----editing tool----增密。双击打开后,输入要素选择要素shp文件,增密方法选择distant,即按距离采样点,在距离栏输入间隔距离,点击确定。

(4)增密成功后,选择系统工具箱----data management tools----要素----要素折点转点,双击打开后选择要素文件,确定即可。

关于步骤3、4,还可以参考    Generate Points Along Lines(沿线生成点 )工具ArcGIS中矢量数据线转点的三种方式_起不好名字就不起了的博客-CSDN博客_arcgis线转点

(5)生成采样点后,将数据导出成shp文件,将其再投影回WGS坐标。系统工具箱----data management tools----投影和变换------投影。双击打开投影后,在输入要素类选择shp文件,输出坐标系选择地理坐标系----world----WGS1984。坐标转回WGS后再次导出数据生成shp文件

(6)打开点数据的属性表,添加字段,名称“X”和“Y”,类型为“浮点型”,精度为10,小数点选择6位,选中新添加的列,右键选择“计算几何”,最后导出属性表为txt文件。用excel打开,使用逗号分隔,另存为excel。

如果你用来爬取街景地图,记得将WGS84转换,比如百度坐标系或者腾讯坐标系。

<think>好的,我现在需要帮助用户解决CUDA程序安装失败的问题。首先,我要回顾用户提供的三个引用内容,看看有哪些信息可以利用。根据引用[1]和[2],用户提到直接使用命令行安装CUDA和cuDNN可能更有效,而不是下载CUDA Toolkit。这可能意味着用户之前尝试用Toolkit安装失败,转而通过命令行成功。另外,引用[3]指出环境变量设置的问题,特别是CUDA_PATH是否正确配置。 接下来,我需要整理常见的CUDA安装失败原因和解决方案。首先,驱动问题,用户需要确认显卡驱动是否兼容CUDA版本。然后,安装方式是否正确,比如引用[2]建议通过命令行安装,而非Toolkit。环境变量设置也是一个关键点,需要检查CUDA_PATH和PATH变量是否包含正确的路径。另外,系统兼容性、安装包完整性以及与其他软件的冲突也需要考虑。 用户可能遇到的问题可能包括驱动不匹配、安装方法错误、环境变量未设置或错误、系统版本不支持等。需要分步骤列出解决方案,比如检查驱动版本,使用命令行安装,验证环境变量,检查系统兼容性等。同时,要提醒用户查看日志文件,以便定位具体错误。 需要确保回答结构清晰,分点说明,每个问题对应解决方法,并引用提供的参考资料。例如,在驱动检查部分引用引用[1]中的CUDA 12.6版本信息,建议用户匹配驱动版本。在安装方法部分引用引用[2]的建议,使用命令行安装而非Toolkit。环境变量部分引用引用[3]的设置方法。 最后,生成相关问题,帮助用户进一步排查可能的问题,比如版本兼容性、cuDNN安装、环境变量验证等。这样用户可以根据自己的情况继续解决问题。</think>### CUDA程序安装失败的解决方案 #### 一、驱动兼容性检查 1. **确认NVIDIA驱动版本** - 使用`nvidia-smi`命令查看驱动版本(Windows可通过控制面板查看) - 检查CUDA版本与驱动的兼容性(例如CUDA 12.6需NVIDIA驱动≥535.129.03)[^1] 2. **更新或回滚驱动** - 若驱动版本不匹配,需通过NVIDIA官网下载适配驱动 #### 二、安装方式优化 1. **推荐使用命令行安装** - 通过`nvcc`工具直接安装CUDA(而非下载CUDA Toolkit安装包)[^2] ```powershell nvcc --version # 验证CUDA编译器状态 ``` 2. **cuDNN安装验证** - 手动下载cuDNN库文件后,需将`bin/`、`include/`、`lib/`目录内容复制到CUDA安装路径对应文件夹[^1] #### 三、环境变量配置 1. **Windows系统设置** - 添加环境变量`CUDA_PATH`指向CUDA安装目录(如`C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v12.6`)[^3] - 在`PATH`变量中追加`%CUDA_PATH%\bin`和`%CUDA_PATH%\libnvvp` 2. **Linux/Mac系统设置** ```bash export PATH=/usr/local/cuda/bin:$PATH export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH ``` #### 四、系统兼容性排查 1. **操作系统版本验证** - 确认系统满足CUDA最低要求(如Windows 10 21H2以上/Linux内核≥3.10) 2. **磁盘权限问题** - 以管理员身份运行安装程序(Windows右键选择"以管理员身份运行") #### 五、日志分析与冲突检测 1. **查看安装日志** - Windows日志路径:`C:\ProgramData\NVIDIA Corporation\CUDA Samples\v12.6` - Linux日志路径:`/var/log/cuda-installer.log` 2. **关闭安全软件** - 临时禁用杀毒软件/防火墙(常见于Windows Defender拦截安装) #### 六、验证安装结果 ```powershell # 检查CUDA编译器 nvcc --version # 测试GPU计算能力 nvidia-smi -q | findstr "CUDA Version" ```
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

我叫杨傲天

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值