题目描述
某个充电站,可提供 n 个充电设备,每个充电设备均有对应的输出功率。
任意个充电设备组合的输出功率总和,均构成功率集合 P 的 1 个元素。
功率集合 P 的最优元素,表示最接近充电站最大输出功率 p_max 的元素。
输入描述
输入为 3 行:
- 第 1 行为充电设备个数 n
- 第 2 行为每个充电设备的输出功率
- 第 3 行为充电站最大输出功率 p_max
- 充电设备个数 n > 0
- 最优元素必须小于或等于充电站最大输出功率 p_max
输出描述
功率集合 P 的最优元素
示例1
输入
4
50 20 20 60
90
输出
90
说明
当充电设备输出功率50、20、20组合时,其输出功率总和为90,最接近充电站最大充电输出功率,因此最优元素为90。
示例2
输入
2
50 40
30
输出
0
说明
所有充电设备的输出功率组合,均大于充电站最大充电输出功率30,此时最优元素值为0。
示例3
输入
3
2 3 10
9
输出
5
说明
选择功率为2,3的设备构成功率集合,总功率为5,最接近最大功率9。不能选择设备10,因为已经超过了最大功率9。
示例3
输入
3
1 2 3
5
输出
5
说明
无
题解
官方题解不够简洁,其实这就是一个基础的01背包问题,组合不能超过最大输出功率这就能将充电设备功率看做重量,选出最接近最大功率的组合值就能将充电功率也看做价值,即重量和价值是完全相等的01背包问题
import java.util.Scanner;
public class 查找充电设备组合 {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
int[] charges = new int[n];
for (int i = 0; i < n; i++) {
charges[i] = sc.nextInt();
}
int target = sc.nextInt();
//0-1背包问题,可以看做重量和价值(充电设备功率)相等,背包容量就是充电站最大输出功率
int[] dp = new int[target+1];
for (int i = 0 ; i < n ; i ++){
int w = charges[i];
for (int j = target ; j >= w ; j --){
dp[j] = Math.max(dp[j] , dp[j-w] + w);
}
}
System.out.println(dp[target]);
}
}
可以通过此链接熟悉各种背包 DP - OI Wiki问题