本文提出了一种新的离线强化学习算法——通过监督微调(Q-SFT)进行Q学习。该方法通过将Q值作为概率进行学习,将Q学习问题转化为一个修改版的监督微调问题。
不同于传统的Q学习,Q-SFT不需要重新初始化模型的权重或添加新的预测值头,而是直接利用预训练语言模型(LLM)或视觉语言模型(VLM)的输出概率来优化。通过这种方式,Q-SFT能在多回合任务中有效学习,并能保留从大规模预训练中获得的知识,避免了传统Q学习方法的稳定性问题。
在多个语言生成和机器人控制任务上,Q-SFT在表现上优于现有的监督微调和其他价值基础的强化学习方法。
1 Q-SFT算法
Q-SFT通过将Q学习问题转化为一个修改版的监督微调(SFT)问题,使得Q值的学习能够直接通过模型的输出概率来进行优化。这种方法通过减少传统Q学习中可能存在的不稳定性,提升了在多回合任务中的训练效率,并且能够有效利用预训练的知识来进行优化。
-
模型初始化:在Q-SFT中,预训练的智能体模型(如LLM或VLM)不需要重新初始化权重,而是直接利用其预训练阶段学到的概率输出。
-
监督微调:与传统Q学习不同,Q-SFT在进行微调时,通过加权交叉熵损失函数,使得智能体在优化过程中学习到的概率值能够近似于目标Q值,而不是通过回归方法来逼近Q值。
-
避免重新初始化:Q-SFT避免了传统Q学习方法中需要新增Q值预测头部并重新初始化权重的步骤,从而更好地利用了预训练模型的潜力。
2 结语
本文提出了一种新的离线强化学习算法Q-SFT,通过将Q值学习转化为监督微调问题,从而有效地在多回合任务中微调预训练的智能体模型,提升其在语言生成和机器人控制等任务中的表现。
论文题目: Q-SFT: Q-Learning for Language Models via Supervised Fine-Tuning
论文链接: https://arxiv.org/abs/2411.05193
3 如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】