《算法零基础100讲》第14讲:最小公倍数

前言

文章参考自:《算法零基础100讲》第14讲

最小公倍数概念

两个数 a 和 b 的最小公倍数是指能同时被 a 和 b 整除的最小倍数。
记作:

lcm(a, b)

特殊地,当 a 和 b 互素时,最小公倍数为 lcm(a, b) = a * b。

在上一节中已经学到利用辗转相除法求的最大公约数,gcd(a, b),若要求最小公倍数,就得先求最大公约数。

在这里插入图片描述
详细推导过程可参考《算法零基础100讲》第14讲

代码实现

先复习一下最大公约数函数:

int gcd(int a, int b)
{
	return !b ? a : gcd(b, a % b);
}

根据概念以及公式,可写出最小公倍数的函数:

int lcm(int a, int b)
{
	return a * gcd(a, b) / b;
}

练习题

LeetCode 1819. 序列中不同最大公约数的数目

在这里插入图片描述

代码实现

#define CAPACITY 200001  
int Exist[CAPACITY];

//辗转相除, 递归方法求最大公约数
int gcd(int a, int b)
{
    return !b ? a : gcd(b, a % b);
}

//比较两个数中的最大值
int Max_Int(int a, int b)
{
    return a > b ? a : b;
}

int countDifferentSubsequenceGCDs(int* nums, int numsSize)
{
    //判空
    if (NULL == nums) return 0;

    //将数组数据置为0
    memset(Exist, 0, sizeof(Exist));

    int max = 0, ans = 0;

    //标记题目给出的数组中的值,并且找出最大值
    for (int i = 0; i < numsSize; ++i)
    {
        Exist[nums[i]] = 1;
        max = Max_Int(max, nums[i]);
    }

    //枚举所有可能存在的最大公约数
    for (int i = 1; i <= max; ++i)
    {
        int tmp = 0;
        for (int j = i; j <= max; j += i)
        {
            if (Exist[j] != 0)
            {
                tmp = gcd(tmp, j);
            }
        }

        //如果这个最大公约数等于i,就记录一次
        if (tmp == i)
        {
            ans++;
        }
    }

    return ans;
}

谢谢收看

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

_索伦

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值