Codeforces 1132E Knapsack(DP)

本文探讨了如何使用动态规划解决给定一个巨大整数W的背包问题,通过840的倍数分解,将问题转化为求解不同贡献值的数的最优组合,实现高效求解。关键在于利用 lcm(1-8) 和 dp 数组找到最大可能的总和,同时确保不超过给定限制。
摘要由CSDN通过智能技术生成

题目链接:Knapsack

题意:给定一个数W(0<=W<=10^18),现在有1-8的数各cnti(0<=cnti<=10^16)个,问能组合出的小于W的最大的数是多少

题解:我们假设在生成答案时每个数对答案的贡献为Vi,因为lcm(1,2...7,8)=840,所以Vi可以表示成840*k+b,   k、b是未知数于是答案ans就可以表示成840*K+B,K为ki的和,B为bi的和,因为B<840*8,所以我们可以dp求出所有B对应的最大K(K多了可以选择不取所以不影响),然后答案取最接近W的即可

细节和不懂见代码注释:

#include<iostream>
#include<stack>
#include<list>
#include<set>
#include<vector>
#include<algorithm>
#include<math.h>
#include<numeric>
#include<map>
#include<cstring>
#include<queue>
#include<iomanip>
#include<cmath>
#include<queue>
#include <bitset>
#include<unordered_map>
	#ifndef local
	#define endl '\n'
#endif */
#define mkp make_pair
using namespace std;
using std::bitset;
typedef long long ll;
typedef long double ld;
const int inf=0x3f3f3f3f;
const ll MAXN=2e6+10;
const ll N=1e5+100;
const ll mod=1e9+7;
const ll hash_p1=1610612741;
const ll hash_p2=805306457;
const ll hash_p3=402653189;
//-----------------------------------------------------------------------------------------------------------------*/
// ll head[MAXN],net[MAXN],to[MAXN],edge[MAXN]/*流量*/,cost[MAXN]//费用;
/* 
void add(ll u,ll v,ll w,ll s){
	to[++cnt]=v;net[cnt]=head[u];edge[cnt]=w;cost[cnt]=s;head[u]=cnt;
	to[++cnt]=u;net[cnt]=head[v];edge[cnt]=0;cost[cnt]=-s;head[v]=cnt;
}
struct elemt{
	int p,v;
};
-----------------------------------
求[1,MAXN]组合式和逆元 
ll mi(ll a,ll b){
	ll res=1;
	while(b){
		if(b%2){
			res=res*a%mod;
		}	
		a=a*a%mod;
	}
	return res;
}
ll fac[MAXN],inv[MAXN]
fac[0]=1;inv[0]=1;
for(int i=1;i<=MAXN;i){
	fac[i]=(fac[i-1]*i)%mod;
	inv[i]=mi(fac[i],mod-2);
}
ll C(int m,int n){//组合式C(m,n); 
	if(!n){
		return 1;
	}
	return fac[m]*(inv[n]*inv[m*-n]%mod)%mod;
}
---------------------------------
 unordered_map<int,int>mp;
//优先队列默认小顶堆 , greater<int> --小顶堆  less<int> --大顶堆  
priority_queue<elemt,vector<elemt>,comp>q;
struct comp{
	public:
		bool operator()(elemt v1,elemt v2){
			return v1.v<v2.v;
		}
};
	set<int>::iterator it=st.begin();
*/
// vector<vector<int>>edge; 二维虚拟储存坐标 
//-----------------------------------------------------------------------------------------------------------------*/
  //map<int,bool>mp[N]; 
ll cnt[10];
ll dp[10][10010];//前i种数组合出j时剩下部分能构成的840的数量
int main(){
/*cout<<setiosflags(ios::fixed)<<setprecision(8)<<ans<<endl;//输出ans(float)格式控制为8位小数(不含整数部分)*/
/*cout<<setprecision(8)<<ans<<endl;//输出ans(float)格式控制为8位小数(含整数部分)*/
	ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);//同步流
	ll w;
	cin>>w;
	for(int i=1;i<=8;i++){
		cin>>cnt[i];
	}
	memset(dp,-1,sizeof(dp));
	dp[0][0]=0;//初始点
	for(int i=1;i<=8;i++){
		for(int j=0;j<840*8;j++){//枚举B
			ll top=min(cnt[i],(ll)840/i);//确定bi
			for(int p=0;p<=top;p++){
				if(j-p*i<0||dp[i-1][j-p*i]<0){//前继状态不存在
					continue;
				}
				dp[i][j]=max(dp[i][j],dp[i-1][j-p*i]+(cnt[i]-p)/(840ll/i)/*确定当前情况下最大的K*/);
			}
		}
	}
	ll maxn=0;
	for(int i=0;i<840*8;i++){//枚举所有情况取最优的
		if(i>w){//超过w了
			break;
		}
		else if(dp[8][i]<0){//无法达成该组合
			continue;
		}
		maxn=max(maxn,min((w-i)/840,dp[8][i])*840ll+i);//注意答案不能超过w
	}
	cout<<maxn<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值