题目链接:Knapsack
题意:给定一个数W(0<=W<=10^18),现在有1-8的数各cnti(0<=cnti<=10^16)个,问能组合出的小于W的最大的数是多少
题解:我们假设在生成答案时每个数对答案的贡献为Vi,因为lcm(1,2...7,8)=840,所以Vi可以表示成840*k+b, k、b是未知数于是答案ans就可以表示成840*K+B,K为ki的和,B为bi的和,因为B<840*8,所以我们可以dp求出所有B对应的最大K(K多了可以选择不取所以不影响),然后答案取最接近W的即可
细节和不懂见代码注释:
#include<iostream>
#include<stack>
#include<list>
#include<set>
#include<vector>
#include<algorithm>
#include<math.h>
#include<numeric>
#include<map>
#include<cstring>
#include<queue>
#include<iomanip>
#include<cmath>
#include<queue>
#include <bitset>
#include<unordered_map>
#ifndef local
#define endl '\n'
#endif */
#define mkp make_pair
using namespace std;
using std::bitset;
typedef long long ll;
typedef long double ld;
const int inf=0x3f3f3f3f;
const ll MAXN=2e6+10;
const ll N=1e5+100;
const ll mod=1e9+7;
const ll hash_p1=1610612741;
const ll hash_p2=805306457;
const ll hash_p3=402653189;
//-----------------------------------------------------------------------------------------------------------------*/
// ll head[MAXN],net[MAXN],to[MAXN],edge[MAXN]/*流量*/,cost[MAXN]//费用;
/*
void add(ll u,ll v,ll w,ll s){
to[++cnt]=v;net[cnt]=head[u];edge[cnt]=w;cost[cnt]=s;head[u]=cnt;
to[++cnt]=u;net[cnt]=head[v];edge[cnt]=0;cost[cnt]=-s;head[v]=cnt;
}
struct elemt{
int p,v;
};
-----------------------------------
求[1,MAXN]组合式和逆元
ll mi(ll a,ll b){
ll res=1;
while(b){
if(b%2){
res=res*a%mod;
}
a=a*a%mod;
}
return res;
}
ll fac[MAXN],inv[MAXN]
fac[0]=1;inv[0]=1;
for(int i=1;i<=MAXN;i){
fac[i]=(fac[i-1]*i)%mod;
inv[i]=mi(fac[i],mod-2);
}
ll C(int m,int n){//组合式C(m,n);
if(!n){
return 1;
}
return fac[m]*(inv[n]*inv[m*-n]%mod)%mod;
}
---------------------------------
unordered_map<int,int>mp;
//优先队列默认小顶堆 , greater<int> --小顶堆 less<int> --大顶堆
priority_queue<elemt,vector<elemt>,comp>q;
struct comp{
public:
bool operator()(elemt v1,elemt v2){
return v1.v<v2.v;
}
};
set<int>::iterator it=st.begin();
*/
// vector<vector<int>>edge; 二维虚拟储存坐标
//-----------------------------------------------------------------------------------------------------------------*/
//map<int,bool>mp[N];
ll cnt[10];
ll dp[10][10010];//前i种数组合出j时剩下部分能构成的840的数量
int main(){
/*cout<<setiosflags(ios::fixed)<<setprecision(8)<<ans<<endl;//输出ans(float)格式控制为8位小数(不含整数部分)*/
/*cout<<setprecision(8)<<ans<<endl;//输出ans(float)格式控制为8位小数(含整数部分)*/
ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);//同步流
ll w;
cin>>w;
for(int i=1;i<=8;i++){
cin>>cnt[i];
}
memset(dp,-1,sizeof(dp));
dp[0][0]=0;//初始点
for(int i=1;i<=8;i++){
for(int j=0;j<840*8;j++){//枚举B
ll top=min(cnt[i],(ll)840/i);//确定bi
for(int p=0;p<=top;p++){
if(j-p*i<0||dp[i-1][j-p*i]<0){//前继状态不存在
continue;
}
dp[i][j]=max(dp[i][j],dp[i-1][j-p*i]+(cnt[i]-p)/(840ll/i)/*确定当前情况下最大的K*/);
}
}
}
ll maxn=0;
for(int i=0;i<840*8;i++){//枚举所有情况取最优的
if(i>w){//超过w了
break;
}
else if(dp[8][i]<0){//无法达成该组合
continue;
}
maxn=max(maxn,min((w-i)/840,dp[8][i])*840ll+i);//注意答案不能超过w
}
cout<<maxn<<endl;
return 0;
}