给定一个二叉树,找出其最小深度。
最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。
示例 1:
输入:root = [3,9,20,null,null,15,7] 输出:2
示例 2:
输入:root = [2,null,3,null,4,null,5,null,6] 输出:5
提示:
- 树中节点数的范围在
[0, 105]
内 -1000 <= Node.val <= 1000
【分析】
求二叉树的最小深度,可通过深度优先遍历来遍历左右子树的最小深度,然后将左右子树的最小深度+1即可。(加上根节点的高度)。
二叉树为空时,最小深度为0.
二叉树只有一个根节点时,直接返回1。
二叉树不为空,左右子树均不为空时,最小深度为左右子树的最小深度+1。
二叉树不为空,二子树中有一个为空,最小深度为不为空的那个子树+1。
可定义一个最小值min=10000来进行比较,通过C语言函数fmin来进行比较最小值(最大值比较可用函数fmax)
具体案例分析1:
root = [3,9,20,null,null,15,7]
开始时,根为3,左右子树均不为空。
首先遍历左子树的最小深度min = fmin(minDepth(root->left),min),此时根为9,左右子树均为空,则minDepth(root->left)为1,进行比较min = fmin(1,10000)=1。
然后遍历右子树的最小深度min = fmin(minDepth(root->right),min),此时根为20,左右子树不为空,遍历两轮后min=2。
返回min+1=1+1=2。最小深度为2。
具体案例分析2:
root = [2,null,3,null,4,null,5,null,6]
开始时,根为2,左子树为空,右子树不为空。只进行遍历右子树。
调用min = fmin(minDepth(root->right),min),此时根为3,左子树为空,右子树不为空。只进行遍历右子树。一直下去,只遍历右子树,最后得到右子树高度为min=4。最后返回min+1=4+1=5。
C语言具体代码如下:
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* struct TreeNode *left;
* struct TreeNode *right;
* };
*/
int minDepth(struct TreeNode *root) {
if(root==NULL){
return 0;
}
else if(root->left==NULL&&root->right==NULL){
return 1;
}
int min=10000;
if(root->left!=NULL){
min = fmin(minDepth(root->left),min);
}
if(root->right!=NULL){
min = fmin(minDepth(root->right),min);
}
return min+1;
}
时间复杂度O(n);空间复杂度O(height);