力扣111:二叉树最小深度

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。

说明:叶子节点是指没有子节点的节点。

示例 1:

输入:root = [3,9,20,null,null,15,7]
输出:2

示例 2:

输入:root = [2,null,3,null,4,null,5,null,6]
输出:5

提示:

  • 树中节点数的范围在 [0, 105] 内
  • -1000 <= Node.val <= 1000

【分析】

求二叉树的最小深度,可通过深度优先遍历来遍历左右子树的最小深度,然后将左右子树的最小深度+1即可。(加上根节点的高度)。

二叉树为空时,最小深度为0.

二叉树只有一个根节点时,直接返回1。

二叉树不为空,左右子树均不为空时,最小深度为左右子树的最小深度+1。

二叉树不为空,二子树中有一个为空,最小深度为不为空的那个子树+1。

可定义一个最小值min=10000来进行比较,通过C语言函数fmin来进行比较最小值(最大值比较可用函数fmax)

具体案例分析1:

root = [3,9,20,null,null,15,7]

开始时,根为3,左右子树均不为空。

首先遍历左子树的最小深度min = fmin(minDepth(root->left),min),此时根为9,左右子树均为空,则minDepth(root->left)为1,进行比较min = fmin(1,10000)=1。

然后遍历右子树的最小深度min = fmin(minDepth(root->right),min),此时根为20,左右子树不为空,遍历两轮后min=2。

返回min+1=1+1=2。最小深度为2。

具体案例分析2:

root = [2,null,3,null,4,null,5,null,6]

开始时,根为2,左子树为空,右子树不为空。只进行遍历右子树。

调用min = fmin(minDepth(root->right),min),此时根为3,左子树为空,右子树不为空。只进行遍历右子树。一直下去,只遍历右子树,最后得到右子树高度为min=4。最后返回min+1=4+1=5。

C语言具体代码如下:

/**
 * Definition for a binary tree node.
 * struct TreeNode {
 *     int val;
 *     struct TreeNode *left;
 *     struct TreeNode *right;
 * };
 */
int minDepth(struct TreeNode *root) {
    if(root==NULL){
        return 0;
    }
    else if(root->left==NULL&&root->right==NULL){
        return 1;
    }
    int min=10000;
    if(root->left!=NULL){
        min = fmin(minDepth(root->left),min);
    }
    if(root->right!=NULL){
        min = fmin(minDepth(root->right),min);
    }
    return min+1;
}   

时间复杂度O(n);空间复杂度O(height);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值