SWUST OJ 642: 俄式乘法

642: 俄式乘法
题目描述
俄式乘法,又被称为俄国农夫法,它是对两个正整数相乘的非主流算法。假设m和n是两个正整数,我们要计算它们的积。它的主要原理如下: if n is 偶数 n m=n/2 2m else n * m=(n-1)/2 + m 该算法只包括折半,加倍,相加等几个简单操作,因此实现速度非常快。具体计算如下图所示:

在这里插入图片描述

输入

两个正整数 n,m。

输出

n和m的乘积。
输出整个求和表达式,运算符与数字之间用一个空格隔开。

样例输入

50 65

样例输出

130 + 1040 + 2080 = 3250

#include<bits/stdc++.h>
using namespace std;
int main()
{
	int n, m, s=0;
   scanf("%d%d", &n, &m);
	while(n != 1)
	{
		if(n % 2 != 0)
		{
			printf("%d + ", m);
			s += m;
		}
		n = n / 2;
    	m = 2 * m;
	}
	s += m;
	printf("%d = %d\n", m, s);
	return 0;
}

以上方法仅供参考,欢迎互联网的广大朋友们提出指正。

### 回答1: swustoj493: postoffice 这个问题不是很清楚,不知道您想要什么样的回答。如果您是想问西南科技大学的oj系统中的题目编号为swustoj493的题目是什么,那么这道题目是关于模拟邮局的题目,需要模拟邮局的业务流程,包括寄信、收信、查询等操作。如果您有其他问题,请具体说明。 ### 回答2: swustoj493是一个在线评测系统,主要用于程序设计竞赛和编程练习。其中postoffice是一道题目,大致描述如下: 假设你现在是一个邮差,需要给不同地点的人分发信件。你可以驾驶一辆汽车,汽车每次可以行驶d距离,需要从邮局出发,然后依次到达所有的收件人所在的位置,最终回到邮局。每个收件人的位置以及他们的信息都已知,你需要根据他们的需求,按照最优的顺序依次分配邮件,保证每个人都能及时收到自己的信件。 这个问题实际上是TSP问题(旅行售货员问题)的一种变体。TSP问题的目标是找到一条路径,使得经过所有的点并回到起点,总路程最短。而postoffice问题则是在TSP问题的基础上增加了一些限制,使得问题更加复杂。 解决这个问题的方法主要有两种:暴力枚举和近似算法。暴力枚举法可以穷尽所有可能的路径,但时间复杂度会随着点数的增加呈指数级增长,不适合应用于大规模数据。而近似算法则可以在合理的时间内快速求解问题,但得到的路径并不一定是最优解。 在编程实现时,可以采用图论的思路,利用邻接矩阵或邻接表来表示点之间的关系,然后使用动态规划、贪心等算法来求解。此外,还可以结合优化算法如模拟退火、遗传算法、粒子群优化等来进一步提高算法的效率。 总的来说,postoffice问题是一个难度较高的数学问题,需要较高的抽象思维、编程技巧以及优化算法知识,同时也是一个很好的练手题目。 ### 回答3: SWUSTOJ493: postoffice是一个计算机程序设计考试题目,该题目是一个基于图论算法的问题。题目描述如下: 你的任务是帮助快递公司规划一条最短的路线,使得每个邮局都可以被访问到。假设有$n$个邮局和$m$条道路,每个邮局有一个编号$1\sim n$,并且每个道路有一个长度$l_i$,连接着两个邮局$x_i$和$y_i$。 为了简化问题,我们假设每个道路都是双向的,且两个邮局之间只有一条道路相连。快递员可以从任一邮局出发,但必须返回原始的起点才算完成任务。 你需要设计一个算法来寻找一条最短的路线,使得经过的邮局数量最大,输出所经过的邮局数量即可。 对于这道题目,我们可以采用Dijkstra算法,首先将所有的邮局看作一个个节点,然后建立邮局之间的道路连接,根据Dijkstra算法的特点,每次会寻找距离起点最近的节点,我们可以在算法的过程中记录下它经过的邮局数量,最终输出经过邮局数量最大的那条路径及经过的邮局数量即可。 例如,在图中点集为$V=\{1,2,3,4,5\}$,边集为$E=\{(1,2,1),(1,3,2),(2,3,2),(2,4,3),(2,5,5),(3,5,4),(4,5,1)\}$,其中(1,2,1)表示点1和点2之间有一条长度为1的边,求所经过的邮局数量最大的最短路经过的邮局数量为3,即起点到达2、3、5这三个节点。 因此,对于SWUSTOJ493: postoffice考试题目,我们只需要利用Dijkstra算法,按照题目要求,记录经过的邮局数量最大的路径即可。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值