Labeled-to-Unlabeled Distribution Alignment for Partially-Supervised Multi-Organ Medical Image Segmentation
多器官分割:发现的问题:在医学图像分割任务中,有标记的器官是有限的,未标记的器官就不容易识别出来(因为背景也往往是没有标记的),特别是对于器官和背景边界不清晰的情况下。
解决问题:文章提出了一种 标记到未标记的分布对齐(LTUDA)框架,文章主要是通过特征分布对齐和增强判别能力来解决这一挑战。
创新点(文章贡献):1.提出了交叉集数据增强来桥接标记像素和未标记像素的分布
2.设计了一种基于原型的分布对齐方法,该方法隐式地促进了对齐和紧凑特征表示的学习。
3.发现了医学图像分割时,未标记与标记的器官突出显示分布不匹配问题
Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels
论文链接:https://arxiv.org/abs/2209.13476
发现问题:1. 医学图像中的,常常存在有些图有长拖尾,这使得有些类别的像素在训练过程中远多于其他类别,在训练过程中盲目利用所有像素可能导致数据不平衡问题,从而影响性能。
2.一致性问题:由于不同解剖特征之间的类内变异,目前尚不清楚分割模型是否徐熙到了有意义且一致的解剖特征
3.多样性问题,在整个数据集中,单个切片的关联性受到相对少的关注,这对于学习区分不同解剖试图的相似但独特的样本是一个挑战。
创新点:
-
解决长尾分布问题:针对医学图像数据的长尾类别分布问题,文章提出了一种策略来积极采样更多尾部类别的难样本,以改善模型在不平衡数据集上的泛化能力。
-
增强一致性和多样性:文章通过构建一组目标,鼓励模型在无监督的方式下将医学图像分解为一系列解剖特征,这些特征在同一类别类型内是同质的,而对于不同类别类型则是有区别的。
-----------------2024.09.25----------------
BPAT-UNet: Boundary preserving assembled transformer UNet for ultrasound thyroid nodule segmentation
代码:https://github.com/ccjcv/BPAT-UNet
发现问题:CNN和Transformers在超声波图像的分割效果不好,因为他们不能获取预测边界信息或分割小目标。
解决策略(创新点):边界点监督模型(BPSM),用于加强边界特征,产生理想的边界点。设计了一个AMFFM,来重构在不同尺度大小的融合特征和通道信息。还有ATM部署在网络瓶颈位置。
ADF-Net: A novel adaptive dual-stream encoding and focal attention decoding network for skin lesion segmentation
代码:暂无
发现问题:在实际医学诊断中,一些病变区域存在不同尺寸的,不规则的,模糊的边界,并且背景和病变区域往往具有低对比度,这些使得容易产生分割错误。
创新:提出了ADF-Net模型,他是基于Transformer和CNN模型的多层次混合框架。同时结合了(AFF)适应特征融合,来适应整合全局和局部特征信息;集中注意力译码结构(FAD),用于可以减少背景噪音,集中注意力在目标区域,促进编码特征,和高层次特征的融合。
论文名称:BCN: Batch Channel Normalization for Image Classification
论文代码:GitHub - AfifaKhaled/Batch-Channel-Normalization
问题:现在流行的高效归一化方法只能应用于一些特定的领域。
BN对批量大小很敏感,需要较大的批量来准确估计均值和方差,这限制了它在线学习或资源有限情况下的应用。训练与测试不一致:BN在训练时使用批量统计信息,在测试时使用移动平均统计信息,这可能导致训练和测试之间的不一致。
LN对卷积层效果不佳:LN在处理卷积层时效果不如BN,因为它不利用批量维度信息,这在某些情况下会影响模型的性能。
GN灵活性不足,GN虽然解决了BN一些问题,但他仍然依赖于固定的分组方式,这可能不适用于所有类型的网络架构。
内部协调变量偏移:
训练挑战,深度神经网络在训练过程中会遇到内部协变量偏移问题,这会导致训练困难和收敛速度慢。
泛化能力:优化困难,现有的归一化技术可能在某些任务上无法提供最佳的泛化能力,尤其是复杂的视觉任务中。
CN的提出旨在结合BN和LN的优势,通过以下方式解决上述问题:
- 通道和批量依赖:BCN通过分别沿(N, H, W)和(C, H, W)轴进行归一化,同时考虑通道和批量的信息。
- 自适应参数:BCN引入了自适应参数来平衡不同归一化输出,这使得它能够根据不同的数据集或任务动态调整归一化策略。
- 提高泛化性能:通过实验验证,BCN能够显著提高神经网络的泛化性能,尤其是在小批量尺寸的情况下。
- 易于集成:BCN可以作为一个基本模块轻松集成到现有的模型中,适用于各种计算机视觉应用。
总的来说,BCN的提出是为了克服现有归一化技术的局限性,提供一种更有效、更灵活且具有更好泛化能力的归一化方法。
************************
2024/12/24
论文题目:Selective and Multi-Scale Fusion Mamba for Medical Image Segmentation
优势特点:西北工业,轻量化(0.038M),小样本数据
代码:
解决的问题及优势:之前的模型复杂度比较高,所以利用mamba 做出了更加轻量化,表现更加好的性能。
框架:
selective Fusion 板块
2025.3.4
论文题目:ANOVELFOCALTVERSKYLOSSFUNCTIONWITHIMPROVEDATTENTIONU-NET FORLESIONSEGMENTATION
创新点:提出了一个 针对小面积病灶区 分割的loss函数,提出了一个新的网络模型(多尺度图片输入可以作为参考。