图的存储(邻接矩阵&邻接表)

图的存储

1 邻接矩阵

  1. A [ i ] [ j ] = 1 A[i][j]=1 A[i][j]=1 表示顶点i与顶点j邻接,即ij之间存在边或者弧。

  2. A [ i ] [ j ] = 0 A[i][j]=0 A[i][j]=0 表示顶点i与顶点j不邻接。 (0≤i,j≤n-1)

图1 图的邻接矩阵存储
a)无权图 b)有权图



1.1 邻接矩阵存储结构定义

#define MaxVertexNum 100  //顶点数目的最大值
typedef char VertexType;	//顶点的数据类型
typedef int EdgeType;	//带权图中边上权值的数据类型
typedef struct{
    VertexType Vex[MaxVertexNum];	//顶点表,用来存储顶点
    EdgeType Edge[MaxVertexNum][MaxVertexNum];  //邻接矩阵,边表,用来存储边
    int vexnum, arcnum;	//图的当前顶点数和弧数
}MGraph;

注意邻接矩阵表示法的空间复杂度为 O ( n 2 ) O(n^2) O(n2),其中n为图的顶点数 ∣ V ∣ |V| V



1.2 完整代码应用

以下图作为输入例子:

图2 无向图及其邻接矩阵



C++代码实现:
#include<iostream>//创建无向图的邻接矩阵
using namespace std;
#define MaxVnum 100  //顶点数最大值
typedef char VexType;  //顶点的数据类型,根据需要定义
typedef int EdgeType;  //边上权值的数据类型,若不带权值的图,则为0或1
typedef struct{
	VexType Vex[MaxVnum];
	EdgeType Edge[MaxVnum][MaxVnum];
	int vexnum,edgenum; //顶点数,边数
}AMGraph;

int locatevex(AMGraph G,VexType x){
	for(int i=0;i<G.vexnum;i++)//查找顶点信息的下标
		if(x==G.Vex[i])
			return i;
	return -1;//没找到
}


void CreateAMGraph(AMGraph &G){
	int i,j;
	VexType u,v;
	cout<<"请输入顶点数:"<<endl;
	cin>>G.vexnum;
	cout<<"请输入边数:"<<endl;
	cin>>G.edgenum;
	cout<<"请输入顶点信息:"<<endl;
	for(int i=0;i<G.vexnum;i++)//输入顶点信息,存入顶点信息数组
		cin>>G.Vex[i];
	for(int i=0;i<G.vexnum;i++)//初始化邻接矩阵所有值为0,如果是网,则初始化邻接矩阵为无穷大
		for(int j=0;j<G.vexnum;j++)
			G.Edge[i][j]=0;
	cout<<"请输入每条边依附的两个顶点:"<<endl;
	while(G.edgenum--){
		cin>>u>>v;
		i=locatevex(G,u);//查找顶点u的存储下标
		j=locatevex(G,v);//查找顶点v的存储下标
		if(i!=-1&&j!=-1)
			G.Edge[i][j]=G.Edge[j][i]=1; //邻接矩阵储置1,如果是有向图,则把'G.Edge[j][i]=1'去掉即可
		else{
			cout << "输入顶点信息错!请重新输入!"<<endl;
			G.edgenum++;//本次输入不算
		}
	}
}

void print(AMGraph G){//输出邻接矩阵
	cout<<"图的邻接矩阵为:"<<endl;
	for(int i=0;i<G.vexnum;i++){
		for(int j=0;j<G.vexnum;j++)
			cout<<G.Edge[i][j]<<"\t";
		cout<<endl;
	}
}

int main(){
	AMGraph G;
	CreateAMGraph(G);
	print(G);
	return 0;
}



输出结果

图3 样例输出结果



2 邻接表

图4 邻接表存储结构示例

图5 绿色部分相当于顶点表


图6 每一种颜色相当于一个边表


2.1 邻接表存储结构定义

#define MaxVertexNum 100  //顶点数目的最大值
typedef struct ArcNode{		//边表结点
	int adjvex;	 	//该弧所指向的顶点的位置
    struct ArcNode *next;	//指向下一条弧的指针
}ArcNode;
typedef struct VNode{	//顶点表结点
	VertexType data;	//顶点信息  
    ArcNode *first;  //指向第一条依附该顶点的弧的指针
}VNode, AdjList[MaxVertexNum];
typedef struct{
    AdjList vertices;	//邻接表
    int vexnum, arcnum;	//图的顶点数和弧数
}ALGraph;	//ALGraph是以邻接表存储的图类型



2.2 完整代码应用

以下图作为输入样例:

图7 邻接表输入样例

#include<iostream>//创建有向图的邻接表
using namespace std;
const int MaxVnum=100;//顶点数最大值
typedef char VexType;//顶点的数据类型为字符型

typedef struct AdjNode{ //定义邻接点类型
	int v; //邻接点下标
	struct AdjNode *next; //指向下一个邻接点
}AdjNode;

typedef struct VexNode{ //定义顶点类型
	VexType data; // VexType为顶点的数据类型,根据需要定义
	AdjNode *first; //指向第一个邻接点
}VexNode;

typedef struct{//定义邻接表类型
	VexNode Vex[MaxVnum];
	int vexnum,edgenum; //顶点数,边数
}ALGraph;

int locatevex(ALGraph G,VexType x){
	for(int i=0;i<G.vexnum;i++)//查找顶点信息的下标
		if(x==G.Vex[i].data)
			return i;
	return -1;//没找到
}

void insertedge(ALGraph &G,int i,int j){//插入一条边
	AdjNode *s;
	s=new AdjNode;
	s->v=j;
	s->next=G.Vex[i].first;
	G.Vex[i].first=s;
}

void printg(ALGraph G){//输出邻接表
	cout<<"----------邻接表如下:----------"<<endl;
	for(int i=0;i<G.vexnum;i++){
		AdjNode *t=G.Vex[i].first;
		cout<<G.Vex[i].data<<":  ";
		while(t!=NULL){
			cout<<"["<<t->v<<"]\t";
			t=t->next;
		}
		cout<<endl;
	}
}

void CreateALGraph(ALGraph &G){//创建有向图邻接表
	int i,j;
	VexType u,v;
	cout<<"请输入顶点数和边数:"<<endl;
	cin>>G.vexnum>>G.edgenum;
	cout<<"请输入顶点信息:"<<endl;
	for(i=0;i<G.vexnum;i++)//输入顶点信息,存入顶点信息数组
		cin>>G.Vex[i].data;
	for(i=0;i<G.vexnum;i++)
		G.Vex[i].first=NULL;
	cout<<"请依次输入每条边的两个顶点u,v"<<endl;
	while(G.edgenum--){
		cin>>u>>v;
		i=locatevex(G,u);//查找顶点u的存储下标
		j=locatevex(G,v);//查找顶点v的存储下标
		if(i!=-1&&j!=-1)
			insertedge(G,i,j);
		else{
			cout<<"输入顶点信息错!请重新输入!"<<endl;
			G.edgenum++;//本次输入不算
		}
	}
}

int main(){
	ALGraph G;
	CreateALGraph(G);//创建有向图邻接表
	printg(G);//输出邻接表
	return 0;
}




输出结果:

图8 样例输出结果(注:邻接表不唯一,因为插入结点顺序可以不同)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值