题目描述
输入一个偶数 N(N<=10000),验证4~N所有偶数是否符合哥德巴赫猜想:任一大于 2 的偶数都可写成两个质数之和。如果一个数不止一种分法,则输出第一个加数相比其他分法最小的方案。例如 10,10=3+7=5+5,则 10=5+5 是错误答案。
输入格式
第一行N
输出格式
4=2+2 6=3+3 …… N=x+y
输入输出样例
输入 #1复制
10
输出 #1复制
4=2+2 6=3+3 8=3+5 10=3+7
思路:先求质数(用筛法算质数比较快速简洁,解题过程中想用居然忘了,浪费很多时间呜呜~~),再判断;
#include <iostream>
#include <math.h>
#include <algorithm>
#include <stack>
#include <string.h>
#include <vector>
#include <cstring>
using namespace std;
int n,m,ans=0;
int a[10005];
int main() {
cin>>n;
for(int i=2; i<=n; i++) {//筛法算质数
for(int j=2; j<=n/i; j++) {
a[i*j]=1;
}
}
for(int i=4; i<=n; i+=2) {
int k=0;
for(int j=2; j<i; j++) {
if(a[j]==0) {
int tmp=i-j;
if(a[i-j]==0) {
k=1;
cout<<i<<"="<<j<<"+"<<tmp<<endl;
break;
}
}
if(k==1)
break;
}
}
return 0;
}