题目描述
有一棵苹果树,如果树枝有分叉,一定是分二叉(就是说没有只有一个儿子的结点)
这棵树共有 NN 个结点(叶子点或者树枝分叉点),编号为 1 \sim N1∼N,树根编号一定是 11。
我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有 44 个树枝的树:
2 5
\ /
3 4
\ /
1
现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。
给定需要保留的树枝数量,求出最多能留住多少苹果。
输入格式
第一行 22 个整数 NN 和 QQ,分别表示表示树的结点数,和要保留的树枝数量。
接下来 N-1N−1 行,每行 33 个整数,描述一根树枝的信息:前 22 个数是它连接的结点的编号,第 33 个数是这根树枝上苹果的数量。
输出格式
一个数,最多能留住的苹果的数量。
输入输出样例
输入 #1复制
5 2 1 3 1 1 4 10 2 3 20 3 5 20
输出 #1复制
21
解决思路+代码:
#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int n,m;
int f[110][110]; //f[i][j]表示i为根的树上保留j条边,最多保留的苹果数量
int e[210],ne[210],h[210],w[210],idx;
bool vis[110];
void add(int a,int b,int x)
{
e[idx] = b;
w[idx] = x;
ne[idx] = h[a];
h[a] = idx++;
}
void dfs(int u) //以u为根的子树
{
vis[u] = true;
for(int i=h[u];i!=-1;i=ne[i])
{
int v = e[i];
if(vis[v]) continue; //如果当前点已经搜索过了,直接跳过避免无限递归
dfs(v);
for(int j=m;j>=0;j--) //以u为根的树保留了j个树枝
for(int k=0;k<=j-1;k++) //v是u的子节点,,f[v][k]以v为根的子树保留了k个树枝,
f[u][j] = max(f[u][j],f[v][k]+f[u][j-k-1]+w[i]);
} //f[u][j-k-1]表示u的其他子节点,v的兄弟节点,保留了j-k-1个树枝
}
int main()
{
memset(h,-1,sizeof h);
cin>>n>>m;
for(int i=1;i<n;i++)
{
int a,b,x;
cin>>a>>b>>x;
add(a,b,x);
add(b,a,x);
}
dfs(1);
cout<<f[1][m];
return 0;
}