P2015 二叉苹果树 树形DP

        

题目描述

有一棵苹果树,如果树枝有分叉,一定是分二叉(就是说没有只有一个儿子的结点)

这棵树共有 NN 个结点(叶子点或者树枝分叉点),编号为 1 \sim N1∼N,树根编号一定是 11。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有 44 个树枝的树:

2   5
 \ / 
  3   4
   \ /
    1

现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。

输入格式

第一行 22 个整数 NN 和 QQ,分别表示表示树的结点数,和要保留的树枝数量。

接下来 N-1N−1 行,每行 33 个整数,描述一根树枝的信息:前 22 个数是它连接的结点的编号,第 33 个数是这根树枝上苹果的数量。

输出格式

一个数,最多能留住的苹果的数量。

输入输出样例

输入 #1复制

5 2
1 3 1
1 4 10
2 3 20
3 5 20

输出 #1复制

21

解决思路+代码:

#include<iostream>
#include<algorithm>
#include<string.h>
using namespace std;
int n,m;
int f[110][110];		//f[i][j]表示i为根的树上保留j条边,最多保留的苹果数量 
int e[210],ne[210],h[210],w[210],idx;
bool vis[110];

void add(int a,int b,int x)
{
	e[idx] = b;
	w[idx] = x;
	ne[idx] = h[a];
	h[a] = idx++;
}

void dfs(int u)		//以u为根的子树 
{
	vis[u] = true;
	for(int i=h[u];i!=-1;i=ne[i])
	{
		int v = e[i];
		if(vis[v]) continue;		//如果当前点已经搜索过了,直接跳过避免无限递归 
		dfs(v);
		
		for(int j=m;j>=0;j--)	//以u为根的树保留了j个树枝 
			for(int k=0;k<=j-1;k++)		//v是u的子节点,,f[v][k]以v为根的子树保留了k个树枝,
				f[u][j] = max(f[u][j],f[v][k]+f[u][j-k-1]+w[i]);        
	}                       //f[u][j-k-1]表示u的其他子节点,v的兄弟节点,保留了j-k-1个树枝
}

int main()
{
	memset(h,-1,sizeof h);
	
	cin>>n>>m;
	
	for(int i=1;i<n;i++)
	{
		int a,b,x;
		cin>>a>>b>>x;
		add(a,b,x);
		add(b,a,x);
	}
	
	dfs(1);
	
	cout<<f[1][m];
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值