树形dp入门 P2015 二叉苹果树

本文介绍了如何使用树形动态规划解决一道关于修剪二叉苹果树的问题,目标是在保留一定数量树枝的同时最大化苹果的保留数量。文章提供了输入输出样例,并给出了AC代码实现。
摘要由CSDN通过智能技术生成

题目描述
有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点)

这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1。

我们用一根树枝两端连接的结点的编号来描述一根树枝的位置。下面是一颗有4个树枝的树

2 5
\ /
3 4
\ /
1
现在这颗树枝条太多了,需要剪枝。但是一些树枝上长有苹果。

给定需要保留的树枝数量,求出最多能留住多少苹果。

输入格式
第1行2个数,N和Q(1<=Q<= N,1<N<=100)。

N表示树的结点数,Q表示要保留的树枝数量。接下来N-1行描述树枝的信息。

每行3个整数,前两个是它连接的结点的编号。第3个数是这根树枝上苹果的数量。

每根树枝上的苹果不超过30000个。

输出格式
一个数,最多能留住的苹果的数量。

输入输出样例
输入
5 2
1 3 1
1 4 10
2 3 20
3 5 20
输出
21

这道题使用树形dp的思路。先把树作为无向图存储,代码如下:

int head[105],tot=0;
struct e{
   
	int v;
	int to;
	int next;
}edge[205];
void add(int a,int b,int c){
   
	edge[tot].v=c;
	edge[tot].to=b;
	edge[tot].next=head[a];
	head[a]=tot++;
}

head[]存储是连接每个节点的第一条边在edge中的下标,通过寻找每条边的next就可以找到连接该点的每一条边。
然后再搜索所有节点并找出每个节点保留一定数量的边时最多能保留几个苹果,代码如下:

int sm[105];
int n,q,f[105][105];
void dfs(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值