一个商人穿过一个 N×NN×N 的正方形的网格,去参加一个非常重要的商务活动。
他要从网格的左上角进,右下角出。
每穿越中间 11 个小方格,都要花费 11 个单位时间。
商人必须在 (2N−1)(2N−1) 个单位时间穿越出去。
而在经过中间的每个小方格时,都需要缴纳一定的费用。
这个商人期望在规定时间内用最少费用穿越出去。
请问至少需要多少费用?
注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。
输入格式
第一行是一个整数,表示正方形的宽度 NN。
后面 NN 行,每行 NN 个不大于 100100 的正整数,为网格上每个小方格的费用。
输出格式
输出一个整数,表示至少需要的费用。
数据范围
1≤N≤1001≤N≤100
输入样例:
5
1 4 6 8 10
2 5 7 15 17
6 8 9 18 20
10 11 12 19 21
20 23 25 29 33
输出样例:
109
思路:
和摘花生一样,线性DP直接套,起始点初始化一下
代码:
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int n;
int f[110][110];
int w[110][110];
int main()
{
memset(f,0x3f,sizeof f);
cin>>n;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
cin>>w[i][j];
f[1][0] = 0;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
f[i][j] = min(f[i-1][j],f[i][j-1]) + w[i][j];
cout<<f[n][n]<<endl;
return 0;
}