最低通行费用——线性DP

一个商人穿过一个 N×NN×N 的正方形的网格,去参加一个非常重要的商务活动。

他要从网格的左上角进,右下角出。

每穿越中间 11 个小方格,都要花费 11 个单位时间。

商人必须在 (2N−1)(2N−1) 个单位时间穿越出去。

而在经过中间的每个小方格时,都需要缴纳一定的费用。

这个商人期望在规定时间内用最少费用穿越出去。

请问至少需要多少费用?

注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。

输入格式

第一行是一个整数,表示正方形的宽度 NN。

后面 NN 行,每行 NN 个不大于 100100 的正整数,为网格上每个小方格的费用。

输出格式

输出一个整数,表示至少需要的费用。

数据范围

1≤N≤1001≤N≤100

输入样例:

5
1  4  6  8  10
2  5  7  15 17
6  8  9  18 20
10 11 12 19 21
20 23 25 29 33

输出样例:

109

思路:

        和摘花生一样,线性DP直接套,起始点初始化一下

代码:

#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;

int n;
int f[110][110];
int w[110][110];

int main()
{
	memset(f,0x3f,sizeof f);
	
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			cin>>w[i][j];
	
	f[1][0] = 0;
	
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			f[i][j] = min(f[i-1][j],f[i][j-1]) + w[i][j];
	
	cout<<f[n][n]<<endl; 
	
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值