描述
输入
第一行是一个整数,表示正方形的宽度N (1 <= N < 100);
后面 N 行,每行 N 个不大于 100 的整数,为网格上每个小方格的费用。
输出
至少需要的费用。
样例输入
样例输出
一个商人穿过一个 N*N 的正方形的网格,去参加一个非常重要的商务活动。他要从网格的左上角进,右下角出。每穿越中间1个小方格,都要花费1个单位时间。商人必须在(2N-1)个单位时间穿越出去。而在经过中间的每个小方格时,都需要缴纳一定的费用。
这个商人期望在规定时间内用最少费用穿越出去。请问至少需要多少费用?
注意:不能对角穿越各个小方格(即,只能向上下左右四个方向移动且不能离开网格)。
后面 N 行,每行 N 个不大于 100 的整数,为网格上每个小方格的费用。
5 1 4 6 8 10 2 5 7 15 17 6 8 9 18 20 10 11 12 19 21 20 23 25 29 33
109题意:
从左上角走到右下角,步数是2n-1看哪个花的钱最少
分析:
就是f[i][j]+=min(f[i][j-1],f[i-1][j]);
代码:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,a[105][105]={0},i,j;
cin>>n;
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
cin>>a[i][j];
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
{
if(i==1)a[i][j]+=a[i][j-1];
else
if(j==1)a[i][j]+=a[i-1][j];
else
a[i][j]+=min(a[i-1][j],a[i][j-1]);
}
cout<<a[n][n]<<endl;
}
感受:
感觉跟走马的差不多,不过这个是找最小值