# [SHOI2002] 滑雪
## 题目描述
Michael 喜欢滑雪。这并不奇怪,因为滑雪的确很刺激。可是为了获得速度,滑的区域必须向下倾斜,而且当你滑到坡底,你不得不再次走上坡或者等待升降机来载你。Michael 想知道在一个区域中最长的滑坡。区域由一个二维数组给出。数组的每个数字代表点的高度。下面是一个例子:
```
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
```
一个人可以从某个点滑向上下左右相邻四个点之一,当且仅当高度会减小。在上面的例子中,一条可行的滑坡为 $24$-$17$-$16$-$1$(从 $24$ 开始,在 $1$ 结束)。当然 $25$-$24$-$23$-$\ldots$-$3$-$2$-$1$ 更长。事实上,这是最长的一条。
## 输入格式
输入的第一行为表示区域的二维数组的行数 $R$ 和列数 $C$。下面是 $R$ 行,每行有 $C$ 个数,代表高度(两个数字之间用 $1$ 个空格间隔)。
## 输出格式
输出区域中最长滑坡的长度。
## 样例 #1
### 样例输入 #1
```
5 5
1 2 3 4 5
16 17 18 19 6
15 24 25 20 7
14 23 22 21 8
13 12 11 10 9
```
### 样例输出 #1
25
解决代码:
#include<iostream>
#include<string.h>
#include<algorithm>
using namespace std;
int n,m;
int g[110][110];
int f[110][110];
int dx[4] = {-1,0,1,0};
int dy[4] = {0,1,0,-1};
int dfs(int x,int y) //返回f[x][y]
{
if(f[x][y]) return f[x][y];
f[x][y] = 1;
for(int i=0;i<4;i++)
{
int X,Y;
X = x+dx[i];
Y = y+dy[i];
if(X>=1&&X<=n&&Y>=1&&Y<=m&&g[X][Y]<g[x][y])
f[x][y] = max(f[x][y],dfs(X,Y)+1);
}
return f[x][y];
}
int main()
{
cin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
cin>>g[i][j];
int ans = -1;
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
ans = max(ans,dfs(i,j));
cout<<ans;
return 0;
}