题目
儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 N 块巧克力,其中第 i 块是 Hi×Wi 的方格组成的长方形。
为了公平起见,小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。切出的巧克力需要满足:
-
形状是正方形,边长是整数。
-
大小相同。
例如一块 6×5 的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小 Hi 计算出最大的边长是多少么?
分析
题目要求将N块巧克力均分为K块巧克力,且每块巧克力边长是整数且是大小相同的正方形,并且要使每块巧克力的大小最大。这道题开始分析没有什么非常明显的算法,可以先想暴力然后思考怎么优化。可以暴力枚举切好后每块巧克力的边长,使最大的边长分下的块数大于k即可,即
但是每块巧克力最大边长为1e5,这样枚举需要两重循环,肯定会TLE,所以考虑二分优化,二分枚举每块的长度
代码
#include<bits/stdc++.h>
#define pb push_back
#define ll long long
#define guanliu ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
using namespace std;
const ll maxn=1e5+7;
const ll mod=1e9+7;
const ll INF=0x3f3f3f3f;
const double pi=acos(-1);
struct node {
int h,w;
};
node ch[maxn];
int cut(int a,int b,int c)
{
return (a/c)*(b/c);
}
int main()
{
guanliu;
int n,k;
cin>>n>>k;
int maxx=-1;
for(int i=1;i<=n;i++)
{
cin>>ch[i].h>>ch[i].w;
}
int ans;
int l,r,m;
l=1;
r=1e5;
while(l<r)
{
m=(l+r+1)/2;
int kk=0;
for(int j=1;j<=n;j++)
{
kk+=cut(ch[j].h,ch[j].w,m);
}
if(kk<k)
{
r=m-1;
}
if(kk>=k)
{
l=m;
}
}
ans=l;
cout<<ans<<endl;
return 0;
}