【蓝桥杯】分巧克力

题目

题目

儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。

小明一共有 N 块巧克力,其中第 i 块是 Hi​×Wi​ 的方格组成的长方形。

为了公平起见,小明需要从这 N 块巧克力中切出 K 块巧克力分给小朋友们。切出的巧克力需要满足:

  1. 形状是正方形,边长是整数。

  2. 大小相同。

例如一块 6×5 的巧克力可以切出 6 块 2×2 的巧克力或者 2 块 3×3 的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小 Hi​ 计算出最大的边长是多少么?

分析

题目要求将N块巧克力均分为K块巧克力,且每块巧克力边长是整数且是大小相同的正方形,并且要使每块巧克力的大小最大。这道题开始分析没有什么非常明显的算法,可以先想暴力然后思考怎么优化。可以暴力枚举切好后每块巧克力的边长,使最大的边长分下的块数大于k即可,即

 但是每块巧克力最大边长为1e5,这样枚举需要两重循环,肯定会TLE,所以考虑二分优化,二分枚举每块的长度

代码

#include<bits/stdc++.h>
#define pb push_back
#define ll long long
#define guanliu ios::sync_with_stdio(0),cin.tie(0),cout.tie(0)
using namespace std;
const ll maxn=1e5+7;
const ll mod=1e9+7;
const ll INF=0x3f3f3f3f;
const double pi=acos(-1);

struct node {
	int h,w;
};
node ch[maxn];

int cut(int a,int b,int c)
{
	return (a/c)*(b/c);
}

int main()
{
	guanliu;
	int n,k; 
	cin>>n>>k;
	int maxx=-1;
	for(int i=1;i<=n;i++)
	{
		cin>>ch[i].h>>ch[i].w;
	}
	int ans;
	int l,r,m;
	l=1;
	r=1e5;
	while(l<r)
	{
		m=(l+r+1)/2;
		int kk=0;
		for(int j=1;j<=n;j++)
		{
			kk+=cut(ch[j].h,ch[j].w,m);
		}
		if(kk<k)
		{
			r=m-1;
		}
		if(kk>=k)
		{
			l=m;
		}
	}
	ans=l;
	cout<<ans<<endl;
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值