蓝桥杯 分巧克力

题目描述

儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。

小明一共有 NN 块巧克力,其中第 ii 块是 H_i \times WiHi​×Wi 的方格组成的长方形。为了公平起见,

小明需要从这 NN 块巧克力中切出 K 块巧克力分给小朋友们。切出的巧克力需要满足:

  1. 形状是正方形,边长是整数;

  2. 大小相同;

例如一块 6x5 的巧克力可以切出 6 块 2x2 的巧克力或者 2 块 3x3 的巧克力。

当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?

输入描述

第一行包含两个整数 N,KN,K (1 \leq N, K \leq 10^51≤N,K≤105)。

以下 N 行每行包含两个整数 H_i,W_iHi​,Wi​ (1 \leq H_i, W_i \leq 10^51≤Hi​,Wi​≤105)。

输入保证每位小朋友至少能获得一块 1x1 的巧克力。

输出描述

输出切出的正方形巧克力最大可能的边长。

输入输出样例

示例

输入

2 10
6 5
5 6

输出

2

运行限制

  • 最大运行时间:2s
  • 最大运行内存: 256M

分巧克力

n,k = map(int,input().split())
x = []  #存放长或宽
y = []  #存放宽或长,x和y这两个数组存放n块巧克力的长和宽
for i in range(n):
  a,b = map(int,input().split())
  x.append(a)
  y.append(b)
 
def check(d):
  global x,y  #定义为全局变量 
  sum=0
  for i in range(n):
    sum+=(x[i]//d)*(y[i]//d)  #即为该块巧克力中能切出几块以i为边长的正方形
  return sum
#经典的二分查找
low = 1  #最小值
high = max(max(x),max(y))  #最大值
while low<high:
  mid = (low+high)//2+1  #中间值
  if check(mid)>=k: 
    low = mid
  else: 
    high = mid-1
 
print(high)

备注:二分细节的设计需要多打草稿,否则很难想象出来

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值