题目描述
儿童节那天有 K 位小朋友到小明家做客。小明拿出了珍藏的巧克力招待小朋友们。
小明一共有 NN 块巧克力,其中第 ii 块是 H_i \times WiHi×Wi 的方格组成的长方形。为了公平起见,
小明需要从这 NN 块巧克力中切出 K 块巧克力分给小朋友们。切出的巧克力需要满足:
-
形状是正方形,边长是整数;
-
大小相同;
例如一块 6x5 的巧克力可以切出 6 块 2x2 的巧克力或者 2 块 3x3 的巧克力。
当然小朋友们都希望得到的巧克力尽可能大,你能帮小明计算出最大的边长是多少么?
输入描述
第一行包含两个整数 N,KN,K (1 \leq N, K \leq 10^51≤N,K≤105)。
以下 N 行每行包含两个整数 H_i,W_iHi,Wi (1 \leq H_i, W_i \leq 10^51≤Hi,Wi≤105)。
输入保证每位小朋友至少能获得一块 1x1 的巧克力。
输出描述
输出切出的正方形巧克力最大可能的边长。
输入输出样例
示例
输入
2 10
6 5
5 6
输出
2
运行限制
- 最大运行时间:2s
- 最大运行内存: 256M
分巧克力
n,k = map(int,input().split())
x = [] #存放长或宽
y = [] #存放宽或长,x和y这两个数组存放n块巧克力的长和宽
for i in range(n):
a,b = map(int,input().split())
x.append(a)
y.append(b)
def check(d):
global x,y #定义为全局变量
sum=0
for i in range(n):
sum+=(x[i]//d)*(y[i]//d) #即为该块巧克力中能切出几块以i为边长的正方形
return sum
#经典的二分查找
low = 1 #最小值
high = max(max(x),max(y)) #最大值
while low<high:
mid = (low+high)//2+1 #中间值
if check(mid)>=k:
low = mid
else:
high = mid-1
print(high)
备注:二分细节的设计需要多打草稿,否则很难想象出来