小黄的刷题之路(十八)——ST表求解区间gcd问题

一、题目

在这里插入图片描述
在这里插入图片描述


二、分析思路

2.1 审题理解

  • 区间gcd问题:有n个整数,查询区间的最大公约数。
  • 这道题已经提示说数据卡得严,并且给的时间只有1s,而且可以发现给的内存却如此多,这一看就不对劲,我用最简单的做法试了一下
    • 思路:区间gcd其实就转化为递归套娃,比如区间内有三个数a[0] a[1] a[2],先求gcd(a[0],a[1])得到一个结果记为g,再求gcd(g,a[2]),整个过程也就是 g c d ( g c d ( a [ 0 ] , a [ 1 ] ) , a [ 2 ] ) gcd(gcd(a[0],a[1]),a[2]) gcd(gcd(a[0],a[1]),a[2])
#include<bits/stdc++.h> 
using namespace std;
int gcd(int m, int n)
{
	if (n == 0)return m;
	else return gcd(n, m % n);
}
inline int read(){
    int x=0,f=1;
    char ch=getchar();
    while(ch<'0'||ch>'9'){
        ch=getchar();
    }
    while(ch>='0'&&ch<='9'){
        x=(x<<1)+(x<<3)+(ch^48);//x = x*10 + (ch -= '0')
        ch=getchar();
    }
    return x*f;
}
int main( )
{
    int n,m;
    //scanf("%d %d",&n,&m);//cin>>n>>m;
    n = read();m = read();
    int a[n+1];
    for(int i=1;i<=n;i++)a[i]=read();//scanf("%d",&a[i]);//cin>>a[i]
    int l,r;
    while(m--)
    {
        l = read();r = read();//scanf("%d %d",&l,&r);//cin>>l>>r;
        int num=a[l];
        for(int i=l+1;i<=r;i++)num = gcd(a[i],num);
        printf("%d\n",num); 
    }
    return 0;
}

结果不意外地超时了,就算使用快读来加快输入也不行

TLE(Time Limit Exceed 超时)真的一生之敌

  • 暂时是毫无思路了,但是过了一天之后,我再看这题突然区间两个字吸引了我,经过一番查询,发现算法届有个经典的区间最值问题,也就是RMQ问题。

  • RMQ问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中下标在i,j里的最小(大)值


2.2 思路

对于RMQ问题,有一个著名的算法叫做ST表,全称Sparse-Table算法,译为稀疏表。是由图灵奖获得者Tarjan提出的。

对于这位大佬,感兴趣的伙伴可以看看这个:tarjan_百度百科 (baidu.com)

ST表是一种解决RMQ问题(区间最值)的强力算法。主要应用倍增的思想,离线预处理时间复杂度 O ( n l o g n ) O(nlogn) O(nlogn),在线查询时间 O ( 1 ) O(1) O(1),是一种非常高效的算法,常被称为TLE的死敌,不过ST表的适用场景是有限的,它只能处理静态区间最值,不能维护动态的,也就是说不支持在预处理后对值进行修改

ST表之所以广为使用,不仅因为它的时间复杂度优秀,还因为它的代码思路比较清晰代码量比较少。核心代码主要集中预处理和查询上

假设现在有长度为n的一个数组a[n],下面以求数组a的区间最小值为例子

  • 离线预处理

s t [ i ] [ j ] st[i][j] st[i][j]表示从第 i 个数起向后连续 2 j 2^j 2j个数中的最小值,也就是 m i n ( a [ i ] , a [ i + 1 ] , . . . , a [ i + 2 j − 1 ] ) min(a[i],a[i+1],...,a[i+2^j-1]) min(a[i],a[i+1],...,a[i+2j1])

一种基于倍增动态规划的思想,其状态转移方程如下:

​ ⭐ s t [ i ] [ 0 ] = a [ i ] st[i][0] = a[i] st[i][0]=a[i]

​ ⭐ s t [ i ] [ j ] = m i n ( s t [ i ] [ j − 1 ] , s t [ i + 2 ( j − 1 ) ] [ j − 1 ] ) st[i][j] = min(st[i][j-1],st[i+2^{(j-1)}][j-1]) st[i][j]=min(st[i][j1],st[i+2(j1)][j1])

第二条转移方程怎么理解呢,其实就是把区间 a [ i → i + 2 j − 1 ] a[i \rightarrow i+2^j-1] a[ii+2j1]分成两个左右两个一样长的子区间 a [ i → i + 2 ( j − 1 ) − 1 ] a[i \rightarrow i+2^{(j-1)}-1] a[ii+2(j1)1] a [ i + 2 ( j − 1 ) → i + 2 j − 1 ] a[i+2^{(j-1)} \rightarrow i+2^j-1] a[i+2(j1)i+2j1],那么整个大区间的最小值就是两个已计算过的区间最小值的最小值。(有点像分治法的思想,一分为二,化大为小)

在这里插入图片描述

int Log[n+1];//以2为底的对数数组
Log[1]=0;
for(int i=2;i<=n;i++)
    Log[i]=Log[i/2]+1;

int n,m;
cin>>n>>m;//数组长度和查询次数
for(int i=1;i<=n;i++)
{
    cin>>a[i];
    st[i][0]=a[i];
}
for(int j=1;j<=Log[n];j++)
    for(int i=1;i<=n;i++)
        st[i][j]=min(st[i][j-1],st[i+(1<<j-1)][j-1]);

热知识:位移运算符的优先级是最低的,低于加减运算符,先计算加减再进行位移

  • 在线查询

假设每次查询的区间左端点为 l 右端点为 r ,思路是,首先找到一个值k,k的含义是“最大的 2 k 2^k 2k不超过查询区间长度 l − r + 1 l-r+1 lr+1”,比如 l = 1 , r = 9 l=1,r=9 l=1,r=9,此时区间长度为9,那么k最大为3,再大一点比如k=4, 2 4 = 16 2^4=16 24=16超过了区间长度9,所以k=4不行,k=3可以。很显然, k = l o g 2 ( r − l + 1 ) k=log_2(r-l+1) k=log2(rl+1)满足我们对k的要求

为什么这么做呢?,因为这样子我们可以找两个长度为 2 k 2^k 2k的区间,一个以l为左端点,另一个以r为右端点,对于k的要求使得这两个区间合起来一定覆盖查询区间,甚至会有重叠部分,那么我们对这两个区间分别求最小值,再比较两个最小值,更小的那个就是整个大区间的最小值。(要注意重叠的部分是不会影响区间最小值的)

我们用式子来看看这个过程,查询区间是 a [ l → r ] a[l \rightarrow r] a[lr],把其分成两个区间 a [ l → l + 2 k ] a[l\rightarrow l+2^k] a[ll+2k] a [ r − 2 k → r ] a[r-2^k \rightarrow r] a[r2kr],那么根据上面的我们的解释可以得到:

m i n ( a [ l → r ] ) = m i n { m i n ( a [ l → l + 2 k ] ) , m i n ( a [ r − 2 k → r ] ) } min(a[l \rightarrow r]) = min\{min(a[l\rightarrow l+2^k]),min(a[r-2^k \rightarrow r])\} min(a[lr])=min{min(a[ll+2k]),min(a[r2kr])}

这时候就能利用前面离线预处理的结果,直接取出ST表里的数据比较得出答案

m i n ( a [ l → r ] ) = m i n ( s t [ l ] [ k ] , s t [ r − 2 k + 1 ] [ k ] ) min(a[l \rightarrow r]) = min(st[l][k],st[r-2^k+1][k]) min(a[lr])=min(st[l][k],st[r2k+1][k])

int Log[n+1];
Log[1]=0;
for(int i=2;i<=n;i++)
    Log[i]=Log[i/2]+1;
int query(int l,int r)
{
    int k=Log[r-l+1];
    return min(st[l][k],st[r-(1<<k)+1][k]);
}

这里可能会有同学不理解为啥要设置一个Log数组,似乎有点多此一举,但其实这也是一种优化时间复杂度的预处理手段,因为一旦查询次数多了之后,每次查询都要计算一次log,就非常花时间了,一次性把log从1到n的结果都以递推的方式计算好给存起来,后面直接取数据,就方便了很多,这种离线预处理+在线查询的思想是十分值得我们学习借鉴的

讲到这里,你可能会觉得,哎说了半天你一句gcd也不提,是不是跑题了,其实不是的,ST表不仅能处理区间最值问题,凡是符合结合律且可重复贡献的信息查询都可以使用ST表高效进行。可重复贡献的意义在于,可以对两个交集不为空的区间进行信息合并,显然最大值、最小值、最大公约数、最小公倍数、按位或、按位与都符合这个条件。

那么只需要写一个求最大公约数的gcd函数,然后把我们上面的min全给改成gcd就行了

int gcd(int a,int b)//辗转相除法
{
    if(!b) return a;
    else return gcd(b,a%b);
}

为了加快输入输出,我使用了一些网上找的模板,基本都是一些固定的写法,可以收藏到自己的代码库里,以后遇到卡时间的题目,直接套用即可
感兴趣的同学可以看看这篇文章,十分详细:浅谈C++ IO优化——读优输优方法集锦


三、代码实现

3.1. C++实现

#include<bits/stdc++.h>
using namespace std;
const int maxn=200000;
//优化输入输出=============================
inline char nc() 
{
	static char buf [100000],*p1=buf,*p2=buf;
	return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline int read() 
{
	static char c=nc(); int x=0,f=1;
	for(;c>'9'||c<'0';c=nc()) if(c=='-') f=-1;
	for(;c<='9'&&c>='0';c=nc()) x=(x<<3)+(x<<1)+c-48;
	return x*f;
}
inline void write(int x) {//加快输出
   if(x>9) write(x/10);  
   putchar(x%10+'0');  
}
//=========================================
int gcd(int a,int b)//辗转相除法
{
    if(!b) return a;
    else return gcd(b,a%b);
}
///st[i][j] 表示从位置i开始,2^j个元素的最大公约数
int st[maxn][20],a[maxn];//区间长度最大不超过2^20
int Log[maxn];
int query(int l,int r)
{
    int k=Log[r-l+1];
    return gcd(st[l][k],st[r-(1<<k)+1][k]);
}

int main()
{
    //离线预处理
    //2^Log[i]=i  Log[i] = log2(i)
    Log[1]=0;
    for(int i=2;i<maxn;i++)
        Log[i]=Log[i/2]+1;
    int n,m;
    n=read();
    m=read();       
    for(int i=1;i<=n;i++)
    {
        a[i]=read();
        st[i][0]=a[i];
    }
    for(int j=1;j<=Log[n];j++)
    {
        for(int i=1;i<=n;i++)
        {
            st[i][j]=gcd(st[i][j-1],st[i+(1<<j-1)][j-1]);
        }
    }
    //在线查询
    while(m--)
    {
        int l,r;
        l=read(),r=read();
        write(query(l,r));
        printf("\n");
    }
    return 0;
}

四、总结

  • 真的很佩服这位能够想出ST表算法的计算机科学家,ST表的关键词是“离线预处理+在线查询”,“倍增动态规划”,“静态算法”,其中的思想非常值得我们借鉴和学习,这次的题目也让我收益匪浅

⭐感谢您能看到这里,这是对我莫大的鼓励!⭐

  • 7
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值