区间gcd (带修) 线段树

本文介绍了如何使用线段树解决区间gcd问题,并结合差分数列进行区间修改。通过建立差分数列b[],在线段树上进行单点修改,同时利用树状数组维护原数列a[],从而实现高效的区间查询和修改操作。
摘要由CSDN通过智能技术生成

题目链接:https://ac.nowcoder.com/acm/contest/1033/B

再次吐槽CH

区间gcd再加区间修改。

一般求gcd的时候辗转相除法。

gcd(x,y)=gcd(x,y-x)

那么可以把这个公式推到3个项。

gcd(x,y,z)=gcd(x,y-x,z-y)

可以看出来这是一个差分数列。

原数列为a[],差分数列为b[]。

这样就可以用线段树在b[]上单点修改,l加上d,r+1减去d。

再用树状数组维护出一个c[]数组,区间修改,单点查询a[]数组。

这样的话答案就是

gcd(a[l]+aks_c(l),ask_t(1,1,n,l+1,r))

就可以较小复杂度处理了。

代码如下:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=500001;
int n,m;
ll c[maxn],a[maxn],b[maxn];
struct node{
    ll ans;
    #define ans(x) t[x].ans
}t[maxn<<2];
inline ll gcd(ll x,ll y){
    return y ? gcd(y,x%y) : x;
}
inline void build(int p,int l,
题目描述 给定一个长度为 $n$ 的序列 $a_1, a_2, \cdots, a_n$。 定义一个数 $k$ 的权值为 $w_k$,其中 $w_k$ 为 $k$ 的因数中 1 的个数。 定义一个区间 $[l,r]$ 的权值为 $\gcd\{a_l,a_{l+1},\cdots,a_r\}$ 的权值。 现在有 $m$ 次操作,每次操作为将区间 $[l,r]$ 内的数加上 $x$(即 $a_l\gets a_l+x,a_{l+1}\gets a_{l+1}+x,\cdots,a_r\gets a_r+x$)。 对于每次操作,出操作后 $[1,n]$ 中有多少个区间的权值为素数。 输入格式 第一行包含两个整数 $n,m$。 第二行包含 $n$ 个整数 $a_1,a_2,\cdots,a_n$。 接下来 $m$ 行,每行包含三个整数 $l,r,x$,表示对区间 $[l,r]$ 内的数加上 $x$。 输出格式 对于每次操作,输出操作后 $[1,n]$ 中有多少个区间的权值为素数。 数据范围 $1\le n\le 10^5$, $1\le m\le 10^5$, $1\le a_i,x\le 10^6$ 输入样例: 5 3 1 2 3 4 5 1 5 1 2 3 2 1 3 1 输出样例: 3 4 3 解题思路 注意到一个数的因数中 1 的个数只与其质因数分解后的指数有关,可以预处理出每个质数的指数数组,即 primes[i] 表示第 $i$ 个质数的指数。 对于每个区间 $[l,r]$,出其权值的质因数分解,即对于每个质数 $p$,区间 $[l,r]$ 内 $p$ 的最小指数 $k$,则该区间的权值为 $\prod_{i=1}^np^{k_i}$ 的权值。 然后我们可以把区间加操作看做将区间内所有数乘上 $x+1$,那么区间内每个质数的指数也都加上了 $1$,因此只需要实现一个支持区间乘的数据结构即可。 考虑使用线段树维护区间乘积,对于每个节点,我们可以维护其子节点的质因数分解的指数数组,然后合并子节点时,将指数数组相应位置相加即可。 对于查询区间权值是否为素数,我们可以使用线性筛判定。 时间复杂度 每次操作的时间复杂度为 $O(\log n + k\log n)$,其中 $k$ 为质因数的个数,因此总时间复杂度为 $O(m\log n + kn\log n)$。 C++ 代码 ``` #include <iostream> #include <cstring> #include <algorithm> #include <cmath> using namespace std; const int N = 100010, M = 1000000; int n, m; int w[M + 10]; // w表示每个数的权值 int primes[N], cnt; // primes表示前cnt个质数 int id[M + 10]; // id[i]表示i这个数在primes数组中的位置 int st[N << 2][20]; // st表示线段树节点中每个质数的指数 bool is_prime[M + 10]; // is_prime[i]表示i是否为质数 int res; // res表示答案 void get_primes(int n) { for (int i = 2; i <= n; i ++ ) { if (!is_prime[i]) primes[cnt ++ ] = i; for (int j = 0; primes[j] <= n / i; j ++ ) { is_prime[primes[j] * i] = true; if (i % primes[j] == 0) break; } } } void init() { for (int i = 2; i <= M; i ++ ) if (!is_prime[i]) { int t = i, cnt = 0; while (t <= M) w[t] ++, t *= i, cnt ++ ; } get_primes(N - 1); for (int i = 1; i <= cnt; i ++ ) id[primes[i]] = i; } void pushup(int u) { for (int i = 1; i <= cnt; i ++ ) st[u][i] = st[u << 1][i] + st[u << 1 | 1][i]; } void build(int u, int l, int r) { if (l == r) { st[u][id[w[l]]] = 1; return; } int mid = l + r >> 1; build(u << 1, l, mid), build(u << 1 | 1, mid + 1, r); pushup(u); } void modify(int u, int l, int r, int ql, int qr, int c) { if (ql <= l && r <= qr) { for (int i = 1; i <= cnt; i ++ ) st[u][i] += c * st[u][i]; return; } int mid = l + r >> 1; if (ql <= mid) modify(u << 1, l, mid, ql, qr, c); if (qr > mid) modify(u << 1 | 1, mid + 1, r, ql, qr, c); pushup(u); } void query(int u, int l, int r, int k) { if (l == r) { bool is_prime = true; for (int i = 2; i <= sqrt(w[l]); i ++ ) if (w[l] % i == 0) { is_prime = false; break; } if (w[l] <= 1) is_prime = false; if (is_prime) res += st[u][k]; return; } int mid = l + r >> 1; query(u << 1, l, mid, k), query(u << 1 | 1, mid + 1, r, k); } int main() { init(); scanf("%d%d", &n, &m); build(1, 1, n); while (m -- ) { int l, r, x; scanf("%d%d%d", &l, &r, &x); modify(1, 1, n, l, r, x); res = 0; query(1, 1, n, x + 1); printf("%d\n", res); } return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值