卫星通信+4G/5G
- 双模通信终端
- 全球广泛使用的双模通信终端
- 铱星双模终端
- 海事双模终端
- 低轨卫星双模终端
- 优势
- 方法
- 自组网内通信
- 跨域通信
- 总结
- 随遇接入数据流
- 总结:
- 参考文献
- 基于多链路的可靠低延迟传输研究进展
- 研究背景
- 多链路传输技术
- 传输层的多链路方法
- 实现低延迟可靠传输的主要方法
- 仿真与对比
- 参考文献
- 基于OpenAirInterface和神经网络的4G和5G基站垂直切换算法
- 研究背景
- 垂直切换的定义
- 神经网络模型的引入
- 实验设计
- 实验结果与分析
- 结论与未来展望
- 参考文献
- 5G/4G/3G蜂窝通信网络中机器学习分类器预测切换的决策
- 研究背景
- 系统模型与数据收集
- 机器学习系统
- 数值分析与结果
- 结论与未来工作
- 参考文献
- 卫星与5G核心网融合空中演示及多接入边缘计算用例
- 摘要:
- 突出贡献
- 重点
- 参考文献
- 基于强化学习的LTE-WiFi公平共存联合信道/子帧选择方案
- 研究背景
- 问题定义
- 强化学习与Q学习介绍
- 提出的方案
- 仿真结果
- 结论与未来工作
- 参考文献
双模通信终端
** 双模通信终端是一种集成了卫星通信和地面无线自
组网通信功能的终端设备。其主要特点是能够实时获取集
群路由信息,在卫星通道和地面自组网通道之间实现自主
无缝切换,以满足多样化通信需求。**
全球广泛使用的双模通信终端
铱星双模终端
铱星双模终端主要依托铱星低轨卫星网络,结合
其他无线网络,如GSM、**4G **等,实现双模/多模通信,提
供全球通信覆盖。它以其在偏远和充满挑战的环境中的可
靠性和弹性著称,主要用于海上、航空和陆基场景,满足
地面基础设施有限地区的关键通信需求。
海事双模终端
海事卫星双模终端依托海事卫星网络,并结合北斗卫
星服务,以海事为重点,集成卫星和地面通信通道,确保
即使在公海也能实现连接。它主要适配船舶跟踪、通信和
安全保障场景,广泛应用于海运业,船对岸通信、导航以
及地面网络失效的紧急情况。因为其采用高轨卫星作为载体。
低轨卫星双模终端
优势
结合低轨卫星具有全球覆盖、更高可靠性、灵活网络拓扑结构等优点,可以实现更多应用场景的需求,提供更加强大、可靠的通信网络。
方法
当双模通信终端处于自组网内时,通过自组网进行信息传递;当双模通信终端处于自组网外时,可以自主切换到卫星通信模式,通过卫星链路实现同网内终端的通信功能,同时将路由状态、态势信息等进行更新。
自组网内通信
当双模通信终端设备处于自组网内时,利用自组网模
组进行自组网内通信,实现信息的传递与交互共享。
跨域通信
- 跨域通信请求的应答
当源节点发起跨域通信请求时,自组网内的中心节点收到并应答。此时,卫星通信模组基带处理芯片开始工作,启动卫星通信功能。 - 连接低轨卫星
卫星通信功能启动后,设备自动开始搜寻低轨卫星,并建立连接。低轨卫星负责中继信号,将源节点的数据传输给对方的中心节点。 - 信道分配
通过低轨卫星的通信过程中,信关站和核心网会分配信道资源,确保数据传输的顺畅。在信道分配完成后,低轨卫星将与对方自组网的中心节点建立连接。 - 对方中心节点识别和通信功能启动
对方的自组网中心节点收到低轨卫星传来的信号后,会识别到通信协议的标志位。这个标志位表明是跨域通信请求。
应用处理器接到中心节点的信号后,控制对方终端的自组网模组打开通信功能,并通过路由找到目标的被寻呼节点。 - 被寻呼节点的通信功能使能
被寻呼节点(即接收通信的一方)接收到自组网中心节点的指令后,启动自身的数据通信功能,使其准备接收数据。 - 握手过程
接下来,源节点和被寻呼节点之间进行通信的握手过程。这是确保双方准备好进行数据通信的必要步骤。
握手成功后,双方的应用模组通过数字接口采集业务数据,并开始对这些数据进行处理。 - 数据处理与打包
数据经过拆包和组包处理后,通过AT(Attention)命令发送给协议处理器。AT命令是一种用于控制设备行为的指令集,在通信协议中经常用于管理数据传输的流程。 - 高层协议处理
在数据进入协议处理器后,高层协议处理单元对数据进行进一步的拆分或重组,确保数据可以按照正确的格式传输。
处理后的数据接着通过通信模块进行信道编码(添加纠错码等,确保数据在传输过程中的准确性)和调制(将数据转换成适合无线信号传输的形式)。 - 射频转换
经过编码和调制后的数据会通过无线前端-基带数字关联(RBDP)接口传送给射频收发芯片,在这里数据被转换成L频段的射频信号(通常用于卫星通信的频段范围)。 - 射频放大和发送
这些射频信号经过射频前端功率放大器进行功率放大,确保信号强度足够高,以便通过天线向外传输。
放大后的信号通过设备的天线发送至本网络的中心节点(即发送方的自组网中心节点)。 - 信号透明转发
中心节点接收到放大的信号后,通过低轨卫星的互联网透明转发功能,将数据转发给对方的目标节点。 - 目标节点接收
最终,对方的目标节点(即被寻呼节点)接收到经过卫星中继传输的信号,完成数据通信。这个过程通过低轨卫星的中继实现源节点和被寻呼节点之间的跨域通信。
总结
- 源节点发起跨域通信请求,通过自组网中心节点请求与目标设备通信。
- 卫星通信功能启动,连接低轨卫星,卫星进行信道分配。对方的自组网中心节点识别请求,启动被寻呼节点的通信功能,双方建立握手。
- 数据打包和拆包处理,经过高层协议处理单元,最终通过无线信道发送到对方。
- 射频信号放大后传输到本网络的中心节点,再通过卫星中继,将信号发送至目标节点。
随遇接入数据流
- 网内外状态判断
当双模通信终端设备位于自组网的通信距离之外,无法再通过自组网进行通信时,终端的应用模块会自动读取当前的状态字,进行网内外状态判断。
确认终端已脱离自组网后,应用模块会将状态位发送给卫星通信模块,通知其设备已离网。 - 切换至卫星通信模式
收到状态位后,终端设备的控制系统会自动切换到卫星通信模块的工作完备态,即启动并准备使用卫星通信功能。此时,自组网通信功能停止,卫星通信模块接管通信。
- 数据采集与处理
切换后,应用模块通过设备的数字接口开始采集业务数据(如语音、图像、传感数据等)。
数据会经过拆包/组包处理,即根据通信协议的要求,将原始数据打包或分割为适合传输的小数据包。
- 数据发送到协议处理器
完成数据打包后,应用模块通过AT(Attention)命令将数据发送给协议处理器。
AT命令是一种通信协议,用于控制模块的操作,并将数据从应用模块传递到通信模块。
- 高层协议处理
在协议处理器中,由高层协议处理单元对接收到的数据包进行拆分或重组,以确保数据能够符合卫星通信链路的传输要求。
- 信道编码与调制
接下来,协议处理器会将处理后的数据交给通信模块,由其执行信道编码(增加纠错信息)和调制(将数字信号转换为适合无线传输的模拟信号)。
- 射频信号处理
经过编码和调制的信号通过RBDP(无线前段-基带数字关联)接口,发送到射频收发芯片,将数据转换为L频段射频信号。L频段(1-2GHz)是常用于卫星通信的频段。
然后,射频信号经过射频前端功率放大器进行放大,以确保信号有足够的功率通过天线发射。
- 卫星通信
放大后的L频段信号通过设备的天线发射到低轨卫星。卫星接收到信号后,通过卫星互联网将业务数据路由到目的地。
- 数据传输至自组网节点
卫星网络会将业务数据转发到目标自组网内的双模通信终端节点。如果目标终端处于自组网内部,卫星网络会通过中心节点将数据传输至目标终端。
总结:
当双模通信终端设备处于自组网通信范围之外时,应用模块会自动判断并切换至卫星通信模式。业务数据通过数字接口采集并处理后,利用AT命令发送至协议处理器,经过信道编码和调制后通过卫星链路传输到目的地。
参考文献
罗袁君, 白吟蕊, 姚永国, 等. 基于低轨卫星互联网的双模通信终端技术[J]. 天地一体化信息网络, 2024, 5(2): 92-101
基于多链路的可靠低延迟传输研究进展
研究背景
随着工业4.0自动化和智能交通中的V2X通信等新兴应用的兴起,可靠的低延迟传输变得至关重要。这些应用通常要求端到端的延迟低于10毫秒,尤其是在5G网络中,**超可靠低延迟通信(URLLC)**的目标是用户平面的延迟控制在1毫秒以内。
多链路传输是一种提供可靠低延迟通信的解决方案。相比单一链路传输,多链路可以提高网络的吞吐量、减少延迟,并提供更高的传输可靠性。
多链路传输技术
- 多链路(Multi-links)是指终端设备或服务器通过多个网络接口同时接入多个网络。多路径(Multi-path)则是通过多跳路径实现数据路由。
- 多链路传输可以在网络层、传输层、物理层等不同层次实现。例如,在网络层中,多路径路由可以选择多条路径将数据从源传输到目的地,从而提高传输的可靠性并减少延迟。
传输层的多链路方法
- MPTCP(Multipath TCP):这是TCP的一种扩展,允许使用多个链路同时传输数据。MPTCP能够更好地利用资源、提高吞吐量,并应对链路故障。
- MPQUIC(Multipath QUIC):基于UDP的QUIC协议的多链路扩展,使得主机能够通过多个链路进行数据传输。
实现低延迟可靠传输的主要方法
论文主要介绍了三种多链路传输技术:
- 分组复制(Packet
Duplication):通过将相同数据复制并通过多条路径发送来确保高可靠性和低延迟。该方法通过冗余数据包减少重传带来的延迟。 - 网络编码(Network
Coding):通过前向纠错编码(FEC)对数据进行编码,并通过多条路径并行传输。即使部分数据丢失,接收端仍然可以通过解码恢复数据,从而减少重传次数,降低延迟。 - 动态选择(Dynamic Selection):根据链路状态动态选择是否进行分组复制或正常转发,以减少传输延迟。
仿真与对比
论文对不同的多链路传输方法进行了分析和对比,主要在网络吞吐量、数据传输率、端到端延迟等方面进行了测试。
- 分组复制方法在提高可靠性方面效果显著,但由于传输冗余数据,网络开销较大。
- 网络编码方法可以减少重传次数并有效降低延迟,但受较慢路径的限制。
- 动态选择方法则能够根据链路状态自适应选择最优策略,进一步减少延迟。
参考文献
Liang W, Xu S, Liang Y, et al. Researches Advanced in Reliable Low Latency Transmission Based on Multi-links[C]//2023 IEEE 3rd International Conference on Electronic Technology, Communication and Information (ICETCI). IEEE, 2023: 67-70.
基于OpenAirInterface和神经网络的4G和5G基站垂直切换算法
OpenAirInterface(OAI) 是一个开源项目,旨在为无线通信系统(特别是4G LTE和5G网络)提供一个完整的软件平台。OAI允许研究人员、开发者和行业从业者使用标准化的开源实现来开发、测试和验证无线通信协议。它模拟了蜂窝网络中的所有主要组件,包括用户设备(UE)、基站(eNB/gNB)和核心网络(EPC/5GC)。
研究背景
- 5G网络的引入为用户提供了几乎无处不在的超高速带宽和低延迟的访问。然而,随着无线通信设备需求的增加,异构无线网络中的多种接入方式(如4G和5G)需要更有效的切换管理。
- 异构网络的挑战:由于不同类型的无线网络(如4G、5G、WLAN等)的共存,每种网络在带宽、覆盖范围和可靠性方面各有不同。为了让用户无缝地在不同网络间切换,必须使用智能的切换算法。
垂直切换的定义
- 垂直切换(VHO)
是指用户设备在不同类型的无线接入网络之间进行切换(如从4G到5G,或从WLAN到5G),以确保网络连接的连续性和最优性能。 - 传统切换的局限性:很多现有的垂直切换算法并未考虑5G网络的特殊性,导致在5G覆盖范围内选择不当的网络。此外,现有算法大多无法处理复杂的网络环境,如用户需求的变化和动态网络负载。
神经网络模型的引入
- 该研究提出了一个基于BP(反向传播)神经网络的垂直切换算法,结合了用户的速度、信干噪比(SINR)、最大传输速率、最低延迟、覆盖范围、误码率(BER)和丢包率(PLR)等多个网络参数,作为输入变量来决定最佳网络。
- 神经网络架构:研究中构建了一个三层的BP神经网络模型,用于处理上述网络参数,通过学习过程来预测网络的下载速度,从而选择最优的网络进行切换。
实验设计
- 实验在Council for Scientific and Industrial Research(CSIR)
的室内实验室中进行,模拟了OAI 4G和OAI 5G网络的异构环境。实验使用了多种硬件和软件设备,如Catalyst
3560交换机、OAI 4G和5G配置基站、以及具有5G功能的华为P40 Pro手机。 - 测量了两个基站的不同性能参数,并配置了跟踪区代码(TAC)、移动国家代码(MCC)、S1接口和移动网络代码(MNC),以确保两个基站的正常通信。
实验结果与分析
- 下载速度对比:使用神经网络模型计算的切换决策显示,基于下载速度的垂直切换算法在连接时长和下载速度上优于传统的切换算法。使用华为P40
Pro 5G手机测试显示,OAI 4G和OAI 5G网络的下载速度分别为31.2 Mbps和42.4 Mbps。 - 切换性能:神经网络模型有效减少了切换次数,并提高了用户设备在网络中的驻留时间,特别是在涉及安全应用的场景下,优先连接到具有更大覆盖范围的OAI
5G网络,减少了频繁切换导致的连接中断。
结论与未来展望
- 该研究展示了基于神经网络的垂直切换算法在4G和5G异构网络环境中的有效性。通过考虑多个网络参数,能够做出智能的切换决策,提升了用户体验。
- 未来工作:计划将该算法应用于室外环境中,以进一步验证其在复杂网络条件下的性能。
参考文献
Vilakazi M, Olwal T O, Mfupe L P, et al. Vertical handover algorithm in OpenAirInterface and neural network for 4G and 5G base stations[C]//2024 International Conference on Information Networking (ICOIN). IEEE, 2024: 126-131.
5G/4G/3G蜂窝通信网络中机器学习分类器预测切换的决策
研究背景
随着移动应用和物联网(IoT)设备对高数据速率和低延迟传输的需求日益增加,蜂窝通信网络中的切换管理成为一个关键问题。切换是指用户设备(如手机)在不同基站或接入点之间切换连接的过程,以确保通信的连续性。
切换决策的准确性直接影响用户的服务质量(QoS)和体验质量(QoE),不准确的切换可能导致通信中断、降低数据速率或引发延迟。
该论文提出了一种基于机器学习的预测模型,旨在通过分析不同环境变量(如RSSI和GPS坐标)来准确预测何时以及如何进行切换,从而改善切换的管理和优化网络性能。
系统模型与数据收集
- 论文介绍了在Princess Sumaya University for
Technology(PSUT)校园内进行的数据采集过程,使用了Network Cell Info
Lite应用程序来收集不同基站的信号强度(RSSI)、GPS坐标和蜂窝连接类型(如5G NSA、LTE、HSPA+等)。 - 通过在不同位置测量,这些数据集成到Orange数据挖掘工具中,生成了8268条记录的数据集。这些数据用于训练不同的机器学习分类器模型,以进行切换预测。
机器学习系统
使用了一系列监督学习分类器模型,包括:
- 支持向量机(SVM)
- k-最近邻(kNN)
- 决策树(DT)
- 人工神经网络(NN),具有三层隐藏层,每层100个神经元,采用ReLu激活函数
- 朴素贝叶斯(NB)
- 随机森林(RF)
- AdaBoost
- 随机梯度下降(SGD)
这些算法用于预测移动设备是否需要切换,以及切换到哪种无线电类型(如4G、5G、HSPA+等)。
数值分析与结果
- 研究对各个算法进行了分类准确率(CA)、F1得分等指标的评估,以比较它们在切换预测中的性能。
- 在最初的实验中,采用了70%训练数据和30%测试数据的比例,结果表明,AdaBoost算法的分类准确率最高,达到90%,而测试响应时间为每条记录656毫秒。
- 随着数据集训练比例降低到50%,AdaBoost的准确率略微下降至86.9%,但仍优于其他算法。相比之下,SGD的表现最差,准确率为45.1%。
- 论文展示了使用不同分类器的混淆矩阵和决策分布图,AdaBoost的决策分布相对均衡,错误分类较少。
结论与未来工作
- 论文得出结论,机器学习算法,特别是AdaBoost,在5G、4G和3G异构网络的切换预测中表现出色。通过该算法,可以提高切换决策的准确性,从而改善网络性能,减少服务中断。
- 未来的研究将致力于在更加复杂的环境中应用这些机器学习算法,并优化其在实际网络部署中的应用。
参考文献
Tahat A, Wahhab F, Edwan T A. An Exemplification of Decisions of Machine Learning Classifiers to Predict Handover in a 5G/4G/3G Cellular Communications Network[C]//2024 20th International Conference on the Design of Reliable Communication Networks (DRCN). IEEE, 2024: 1-5
卫星与5G核心网融合空中演示及多接入边缘计算用例
摘要:
本文详细介绍了作为ESA ARTES项目SATis5和OSMOSIS的一部分,在2019年巴塞罗那世界移动通信大会(MWC)上成功进行的空中演示测试。本次演示展示了卫星与最新的3GPP Release 15 5G核心网的集成,允许将卫星回程网络作为5G蜂窝接入网运行,并演示了通过与卫星回程网络集成的4G/LTE蜂窝接入网高效的边缘内容交付。阐述了关键的底层架构概念和多访问边缘计算(MEC)用例。提供了有用的无线验证测试结果。
突出贡献
-
卫星回程集成到最新的3GPP Rel’15 5G核心网,允许运行卫星回程网络作为标准3GPP 5G蜂窝接入网;
-
SDN(软件定义网络)、NFV(网络功能虚拟化)和MEC技术集成到卫星通信中;
-
多接入边缘计算用例:
(1)卫星上的eMBB和URLLC网络切片用例;
(2)有效的多址内容传送和卫星边缘缓存;
(3)自适应比特率(ABR)流媒体和内容交付网络(CDN)集成。 -
SES:提供端到端管理服务,用其现有的ASTRA 2F地球同步卫星系统(28.20E)为空间段提供动力,并在位于卢森堡贝茨多夫的传送站的远程和集束平台之间提供无缝连接。为Outbound(FWD)链路分配的带宽为26 MHz,为Inbound (RTN)链路分配的带宽为6 MHz,而本次演示使用的频段是ku频段(14GHz Uplink (UL));12ghz下行链路(DL)。
-
iDirect:提供5G卫星集线器平台和卫星终端,融合SDN/NFV和MEC能力,使卫星融入3GPP标准5G核心网。后一种集成允许将卫星回程网络作为3GPP标准5G蜂窝接入网运行。iDirect还贡献了OSMOSIS多访问边缘计算用例,该用例作为覆盖在SATis5测试台上进行了演示。
-
Fraunhofer FOKUS:提供Open5GCore工具包,实现最新的3GPP Release 15 5G,核心网集成到iDirect卫星集线器平台,将卫星网络作为3GPP标准的5G蜂窝接入网进行运营。
-
eNodeB基站和用户设备(UE)/智能手机以及4G/LTE
EPC,作为OSMOSIS多接入边缘计算用例[6]的一部分集成,该用例作为覆盖在SATis5测试台上进行了演示。这个原型4G/LTE蜂窝接入网在LTE频段5
(826-831 MHz (UL), 871-876 MHz (DL))上运行,带宽为5 MHz。
卫星地面段对应于iDirect的Velocity™。特别是,位于SES远程传输站点的iDirect Velocity™智能网关(IGW)系统为卫星集线器平台引入了标准的3GPP核心网(SatCore)。现有卫星网络的功能被卸载,允许SatCore像标准的地面3GPP网络一样操作和管理网络。现有的卫星网络被修改为符合标准RAN,称为卫星RAN (SatRAN),节点到SatCore。此外,远程卫星终端被修改为将自己作为网络的标准终端呈现,这允许它连接到SatCore以访问网络服务
重点
参考ETSI TR 103 611[16]和下图5,这里感兴趣的5G系统架构中卫星网络的融合场景就是所谓的“间接混合3GPP非地面网络接入”。在此集成场景中,5G终端由接入点提供服务。
该接入点由可信的混合3GPP NTN接入网提供服务。终端管理适用于已启用NTN的终端。启用NTN的终端认可多路复用节点角色。
这种情况的另一种措辞可能是“非3GPP L2,非3GPP L1的间接3GPP NTN接入”。在这种情况下,通过5G卫星接入网(弯管卫星情况)间接连接,但使用混合3GPP NTN接入网,而不是5G卫星接入网而不是3GPP定义的NTN 5G NR(新无线电)接入。
参考文献
Hsieh C Y, Ren Y, Chen J C. Edge-cloud offloading: Knapsack potential game in 5G multi-access edge computing[J]. IEEE Transactions on Wireless Communications, 2023, 22(11): 7158-7171.
基于强化学习的LTE-WiFi公平共存联合信道/子帧选择方案
这篇论文提出了一种基于强化学习的联合信道和子帧选择方案,用于实现LTE和WiFi共存的公平性问题。研究的主要目的是在不依赖WiFi系统信息的情况下,通过优化LTE的信道和子帧选择,保证LTE和WiFi系统能够公平共存,从而提升通信性能并减少数据包丢失。
研究背景
- 随着移动数据流量的快速增长,特别是高带宽需求的应用(如高清视频、在线游戏等)的普及,提升LTE网络的容量变得至关重要。
- 由于授权频谱资源有限,LTE系统开始利用未授权的5GHz频段,该频段也被WiFi等其他无线系统使用。LTE和WiFi系统在未授权频段上的共存问题成为焦点。
- Listen-Before-Talk (LBT)
是LTE与WiFi系统共存的标准方法之一,即LTE在发送数据之前需要检测信道状态,但如何实现信道和子帧的最优选择仍是挑战。
问题定义
- 现有的信道选择方案主要通过定期检测信道上的接收功率选择噪声最小的信道。然而,这种基于感知的方案在动态网络环境下效果不佳,且可能导致信道利用效率低。
- 论文中提到的挑战包括:信道感知和通信不能同时进行;感知结果可能不准确;固定的感知周期难以适应动态环境。
强化学习与Q学习介绍
- Q学习
是一种常见的强化学习算法,能够通过与环境的反复交互,学习最优的行为。Q学习基于状态、动作和奖励的概念,在论文的场景中,LTE接入点(AP)充当“智能体(agent)”,通过监控信道和子帧的状态,选择最优的动作(即选择信道和子帧)。 - 在Q学习过程中,智能体根据其选择的动作获得奖励,并通过更新Q值来改进未来的选择。
提出的方案
论文提出了一种基于强化学习的联合信道和子帧选择方案,具体包括:
-
状态:LTE AP监控当前使用的信道和子帧状态,作为强化学习的输入。
-
动作:智能体通过选择不同的信道和子帧组合来优化通信性能。
-
奖励:奖励函数根据系统的吞吐量和公平性来定义,目标是让系统在信道利用率和流量公平性之间取得平衡。
该方案是分布式实现的,即每个LTE AP独立地执行Q学习算法,无需了解WiFi系统的内部信息。
仿真结果
论文通过仿真验证了所提出方案的有效性,并与传统的信道选择方案(基于感知的方案和最大吞吐量方案)进行了比较。结果表明:
公平性:提出的方案能够显著提升LTE和WiFi系统的共存公平性。与基线方案相比,该方案在不同的网络流量条件下表现更加稳定,尤其是在LTE AP间子帧数不平衡的情况下。
数据包丢失率:提出的方案降低了数据包的丢失率,尤其是在高流量的情况下,表现出优越的性能。
吞吐量:虽然该方案的平均吞吐量略低于最大吞吐量方案,但在保证公平性的同时,吞吐量表现仍然良好。
结论与未来工作
论文提出的基于Q学习的联合信道和子帧选择方案可以在动态网络环境中自动选择最优的信道和子帧,改善LTE和WiFi系统的共存公平性并减少数据包丢失。
未来的研究工作将包括在更复杂的场景下验证该方案的性能,并使用真实的WiFi流量数据集进行测试。
参考文献
Kishimoto Y, Xiaoyan W, Umehira M. Reinforcement learning based joint channel/Subframe selection scheme for fair LTE-WiFi coexistence[C]//2020 16th International Conference on Mobility, Sensing and Networking (MSN). IEEE, 2020: 367-372.