目录
一 . 获取图片信息种对应坐标区域日期信息 (类型为1:http链接 类型为 2本地图片路径)
二 . ocr图片识别日期信息获取,调用获取图片区域相应位置方法
当今数字化的时代,我们经常需要从图像中提取信息,以便进行后续的处理和分析。其中,日期 信息作为一种重要的时间标记,常常存在于各种图像中,例如照片、截图等。然而,要手动从图像中提取日期信息是一项耗时且繁琐的任务,特别是当图像数量庞大时。因此,我们需要一种自动化的方式来实现这一任务。
PaddleOCR 是一个基于 PaddlePaddle 深度学习框架的开源 OCR(Optical Character Recognition,光学字符识别)工具库,它提供了强大的文字识别功能,能够准确地从图像中识别出各种文字信息,包括日期。在本文中,我们将探讨如何利用 PaddleOCR 来实现图像中日期信息的自动识别。
本文要解决的问题:从图像中提取日期信息并生成rtsp视频回放URL
一 . 获取图片信息种对应坐标区域日期信息 (类型为1:http链接 类型为 2本地图片路径)
# 读取图片识别相应位置坐标获取 类型为1:http 类型为 2本地图片路径
def x_y_get(image,type):
if type == 1:
# Nginx图片的访问地址
# image_url = "http://192.168.14.93:85/car_image/202306/20230601022933/em_1.jpg"
image_url = image
# 下载图片
response = requests.get(image_url)
image_data = response.content
# 将图片数据加载为OpenCV图像
image_array = np.frombuffer(image_data, np.uint8)
image = cv2.imdecode(image_array, cv2.IMREAD_COLOR)
else:
# 读取图像
image = cv2.imread(image)
# 定义要截取的区域的坐标
x, y, w, h = 20, 0, 800, 100 # 坐标
# 截取图像区域
cropped_image = image[y:y+h, x:x+w]
# 将截取的图像转换为灰度图像
gray_image = cv2.cvtColor(cropped_image, cv2.COLOR_BGR2GRAY)
# # 展示处理后的图像
# plt.imshow(cropped_image, cmap='gray')
# plt.axis('off') # 关闭坐标轴
# plt.show()
return gray_image